
IMPROVING STATEFUL INSPECTION LOG ANALYSIS

Cristiano Lincoln Mattos (lincoln@cesar.org.br)

Centro de Estudos e Sistemas Avançados do Recife - CESAR

Universidade Federal de Pernambuco – CIn/UFPE

Tempest Security Technologies

Evandro Curvelo Hora (evandro@cesar.org.br)

Centro de Estudos e Sistemas Avançados do Recife - CESAR

Universidade Federal de Pernambuco – CIn/UFPE

Universidade Federal de Sergipe – DCCE/UFS

Tempest Security Technologies

Fabio Silva (fabio@cesar.org.br)

Centro de Estudos e Sistemas Avançados do Recife - CESAR

Universidade Federal de Pernambuco – CIn/UFPE

Marco Antonio Carnut (kiko@cesar.org.br)

Centro de Estudos e Sistemas Avançados do Recife - CESAR

Universidade Federal de Pernambuco – CIn/UFPE

Tempest Security Technologies

ABSTRACT

This paper presents a method for analyzing firewall log files that recognizes related connections from

application level protocols, much like “stateful inspection” firewalls such as Linux's IPTables or Checkpoint's

Firewall-1 do for allowing/denying traffic. Both a general framework and specific examples are discussed, and

analysis results from sample data. Implications and potential for security applications are also presented.

1 INTRODUCTION

Log analysis is an often forgotten activity,

perhaps because of the massive amount of logs

generated by firewalls and the lack of good

automated tools to aid in their analysis and

interpretation. Most analysis tools limit themselves

to tally up connection counts; since many

application protocols originate and/or receive

several connections, this is neither a convenient nor

didactic way of presenting the results of such an

analysis.

It would be much better if the analysis tool

could identify related connections from common

application protocols, tallying them separately or

ignoring them. The resulting report would be much

more readable, allowing for easier identification of

normal and anomalous behavior.

This paper is organized as follows: section 2

details how the connection tracking process in

typical stateful inspection firewalls interact with the

log generation process, highlighting some

particularities that arise from this interaction,

especially in Linux’s IPTables and Checkpoint’s

Firewall-1. Section 3 describes how the ideas of

stateful connection tracking and correlation can be

applied successfully in log analysis to expose a few

kinds of security-related anomalies. Section 4

outlines some ideas for implementing these

techniques directly on firewalls, intrusion detection

systems and other network devices subject to real-

time processing constraints. Section 5 presents

conclusions and ideas for future work and

implementations.

2 TYPICAL STATEFUL LOG GENERATION

Stateful inspection firewalls log their activities

depending on the protocol involved: for TCP and

UDP, they log the first packet that causes the

“connection” to be evaluated against its rule base;

subsequent packets of accepted connections are not

logged since they are already in the state table. The

return packets of these connections are not logged

either, and are allowed to pass. Rejected

connections are always logged since they

necessarily cause the rule base to be consulted.

A connection is identified by its traditional 4-

tuple: (source address, source port, destination

address, destination port). This allows the concept

of “connection” to be extended to UDP, which,

being a datagram protocol, lacks the concept of

“connection”; in this paper, we refer to them as

UDP “sessions”.

The state tables have inactivity timeouts. Idle

TCP connections are removed from the state table

after a certain period (typically tens of minutes).

The same applies to UDP sessions, but with a much

shorter timeout – tens of seconds, typically. A

connection that resumes transmitting after these

periods is rechecked against its rule base and logged

again.

For TCP, either a FIN or a RST packet removes

the connection from the state tables. It is interesting

to note that while connection initiations are logged,

connection terminations are not. This is unfortunate,

since interesting data could be obtained from them,

such as the duration of the connection. This

obviously doesn’t apply to UDP, since it lacks

explicit termination; they are dealt with by the

aforementioned timeout rules.

ICMP packets, however, are typically logged in

the traditional stateless fashion: each packet

generates a log entry, without trying to prevent

further log entries by relating it with previous

exchanges. This is somewhat inconsistent, since

there is usually enough information in ICMP

packets to be able to relate requests and replies,

despite the fact that they were not designed to

provide connection services.

Checkpoint’s Firewall-1 has an extra “excessive

log” filtering feature built-in: nearly identical

packets arriving within a certain time frame (62

seconds, by default) will not be logged. This

prevents long-lasting ping trains, commonly used by

system administrators and dynamic routing

protocols for connectivity testing, to flood the logs

with repetitive uninteresting data. IPTables can do

that kind of rate limitation using token bucket

filters, but it's not enabled by default.

It is also appropriate to remind that logging is

optional, being enabled or disabled on a rule-by-

rule basis. The more pervasive the logging policy is,

the better the results will tend to be.

In fact, Firewall-1 goes beyond, allowing each

rule to be logged in on of several logging styles:

“none” (no logging), “short” (logs only source and

destination addresses and ports), “long” (same as

“short” plus translated addresses and VPN events)

and “accounting” (same as “long” plus total amount

of data transferred). The more detailed the logging,

the bigger the speed and space requirements.

2.1 Related connection logging

When a connection is accepted by a rule with

certain “special” destination ports (21/tcp, for

example, corresponding to the control port of the

FTP service), it is put “on watch”: all packets in this

connection are inspected looking for control

information about new endpoint (addresses & ports)

negotiations. In our example with the FTP protocol,

that would be the “PORT” command. This new

endpoint is added to a separate table, along with a

destination endpoint. Together they become a

special temporary rule that is checked even before

the rule base and allows those connections to pass

even without explicit mention in the rule base. This

is what we call “related connections”.

When one of these related connections is

initiated, the “related connections special rule table”

is checked, a match is found and the connection is

automatically accepted. However, Firewall-1

doesn’t log the acceptance of this connection,

maybe because they’re supposed to be accepted

anyway. This is unfortunate from the point of view

of the log analyzer, since valuable information

about the exact connections that took place is lost.

IPTables, however, can be set up in a way that logs

these connections.

When the master connection is shut down, either

by timeout or by explicit termination, all its related

“special rules” are deleted, thus closing the “holes”

they opened in the firewall. Notice that it doesn't

finish any ongoing related connections; it merely

prevents the creation of new ones. None of this is

logged, though. It should also be stressed that the

deleted rule is a temporary one kept in memory –

none of this modifies the security policy rule table

in any way.

While this process has been described for FTP

only, it readily generalizes for several other

protocols. The principle is the same: watch and

interpret the control connection searching for new

endpoint negotiations, adding them to the special

“related connections dynamic rule table” and

making sure to get rid of them when the control

connection finishes.

Note that this approach requires one handler for

each application protocol, since it is necessary to

understand the protocol messages in sufficient detail

to extract the endpoint negotiations. Both Firewall-1

and IPTables have handlers for several popular

protocols that require related connections, such as

Sun RPC, RealAudio, etc.

It is unfortunate that neither Firewall-1 nor

IPTables log the name of the application protocol

handler or the endpoints of the related control

connection – if that information was available, it

would be possible to reconstruct exactly which

related connection was generated by which control

connection.

From the preceding discussion, it follows that

application protocols handled specially by the

firewall will usually have only its control

connection logged, preventing any correlation with

its related connections – FTP, RealAudio, etc.,

being the prototypical examples. Several other

protocols and network interactions, however,

exhibit related connection behavior without being

subject to any special processing. These are worthy

cases for stateful correlation.

3 THE TECHNIQUE

3.1 Connection correlation

The following section of the log analyzer

configuration file makes a good example of the

technique:

1 port=80/tcp name=http-reverse-conn
2 master: record srcip, dstip
3 related-X: match srcip_r=dstip,

dstip_r=srcip, dstport_r=6000/tcp
4 related-http: match srcip_r=dstip,

dstip_r=scrip, dstport_r=80/tcp
5 related-ftp: match srcip_r=dstip,

dstip_r=scrip, dstport_r=21/tcp
6 related-generic: match srcip_r=dstip,

dstip_r=scrip, dstport_r=*/*

(The line numbers are for reference only in this

text; they don’t actually need to be present in the

actual configuration file).

The first line specifies the name of the event

(“http-reverse-connection”) and the port on which

the master connections should be watched: 80/tcp.

The second line specifies the which data from the

master connection should be recorded in the “state

table”; in this case, the source and destination IP

addresses. We could simplify it by storing

everything about the connection, but, since the state

tables tend to grow quite large, it is more memory-

efficient to store only what is effectively needed.

The remaining lines specify several cases of

related connections that we would be interested to

hear about:

•

The third line describes an attempt to connect

to the X Windows port of the machine that

originated the HTTP request. It often happens

in Unix machines after a successful exploitation

faulty CGI applications. Reading from the

notation, it says “tag with the name ‘related-X’

all connections coming from the same IP of the

destination of the master connection, going to

the same IP that originated the master

connection and whose destination port is

6000/tcp”.

•

The fourth and fifth directives go along similar

lines, but for ports 80/tcp (HTTP) and 21/tcp

(FTP). Readers with background on common

exploits and intrusion detection will recognize

this traffic behavior as arising from a successful

exploitation of a common IIS vulnerability

where the attacker connects elsewhere to

download trojan horses or remote control

programs.

•

The sixth line is a “catch-all” for reverse

connections: it would flag any connections

originating from the web server originally

contacted to the client that originally made the

contact. The “*” stands for “any”.

While none of these kind of traffic are proof of a

security breach, they are uncommon enough to raise

suspicions and deserve the attention of the

administrators.

It can be argued that the condition

“dstip_r=srcip” is too restrictive – an attacker could

download his backdoors from a machine other than

the one he/she used to send the exploit. This

condition could be relaxed if it is felt that it

wouldn’t generate too many false alarms.

On the other hand, if we make some

assumptions about the security policy and the

network architecture, we could generalize the match

condition without significantly increasing its

potential for false positives: if we assume that the

HTTP servers are on a DMZ and the security policy

forbids connections originating from the DMZ

going to the Internet (a well-known Good Thing),

we could write:

6 related-generic: match srcip_r=dstip,
dstport_r=*/*, action=reject or
action=drop

That is, flag only the connections that were

blocked – the fact that it was blocked is indication

that it is against the security policy.

This kind of correlation analysis is especially

useful when doing forensic investigations in

incident response scenario: it easily pinpoints

reverse connections and other anomalies that are

telltale signs of unauthorized activity, automating

the tedious manual process of relevant evidence

collection.

There are several kinds of traffic that can be

correlated in this fashion. Although most of it is not

directly security-related, the mere act of properly

grouping them together and displaying it nicely

encourage the system administrators to actually read

the log summaries and thus conform to the classical

“know thy traffic” security tenet. The following

subsections illustrate some cases:

3.2 ICMP Messages Correlation

It would be useful to correlate the ICMP

messages with the packets that originated them. The

fragment below shows such a configuration in our

tool for a simple UDP ⇔ ICMP correlation.

1 port=*/udp name=unreachables
2 master: record srcip, dstip,

ipid optional
3 port-unreach: match dstip_r=srcip,

type=3-3/icmp, ipid_r=ipid
4 net-unreach: match dstip_r=srcip,

type=3-0/icmp, ipid_r=ipid
5 host-unreach: match dstip_r=srcip,

type=3-1/icmp, ipid_r=ipid
6 frag-needed: match dstip_r=srcip,

type=3-4/icmp, ipid_r=ipid
7 admin-prohib: match dstip_r=srcip,

type=3-13/icmp, ipid_r=ipid
...

The first line defines the “unreachables” tag and

state table for all UDP sessions. The second line

tells it to record only the source and destination IPs

and the IP identification number. The following

lines identify several kinds related ICMP control

messages that could arise out of this packet: port,

host or destination unreachable, communication

administratively prohibited (commonly sent by

packet filtering routers), etc. In this example, the IP

identification number is used to relate the replies

with the packets that originated them. Since certain

log file formats don’t record the ID field of the IP

header, the “optional” keyword is used to make the

log analyzer try to relate the packets even in its

absence. Without the “optional”, the analyzer

would simply discard this whole section due to lack

of information to perform the correlation.

Even simple things such as correlating pings

prove useful and have interesting security

implications: (the example below was shortened for

clarity – we could promptly add the same ICMP

correlation rules we did above for UDP):

1 type=8-0/icmp name=pings
2 echo-request: record srcip, dstip, ipid
3 echo-reply: match srcip_r=dstip,

dstip_r=srcip, ipid_r=ipid optional,
type=0-0/icmp, atmostonce

...

In the above example, the “atmostonce” keyword

tells the analyzer that the replies must match the

request at most once. “At most” because the reply

may get lost or not be reported in the log. The tool

considers an anomaly to see two or more replies to

the same packet. Badly configured routing,

broadcast address and other bizarre network effects

might cause this and have been observed in practice.

If the condition that requires the match of the IP IDs

is relaxed, it might be used to detect ICMP tunnelers

such as Loki – an interesting security event worth

being flagged.

3.3 Connection/Session Counting and Graphing

Besides the “record” directive, the specification

of the master connection allows for other kinds of

processing. The example below implements a port

scan detector:

1 type=*/tcp name=portscan-detector
2 histogrm: match port=*/tcp or port=*/udp

count dstport group_by srcip
graph if count > $treshold

This setting does the following: for each source

IP, the analyzer builds a hash table that counts the

number of different destination ports in the TCP

connections and UDP sessions it originated. If the

number of connections is greater then $treshold

(a macro that we once set to expand to 60 and never

more changed it), it produces a histogram graph of

the distribution of the ports. The original idea was to

make a real histogram graph to be saved as a GIF

file to be viewed in a web page, but since one of the

requisites of our first version was to be text-only, it

produces a three-line report like the one shown in

Figure 1.

The first line lists the total number of connection

attempts that matched, the source address and the

total number of unique ports.

The second line is the privileged port number

space from 0 to 1023, each character representing

16 ports. The “-” characters means that this “slot” of

16 ports received no “hits” or connection attempts.

Numbers and letters are hex digits representing the

number of hits each slot had.

The third line is the full port number space from

0 to 65535, each character representing a slot of

1024 ports. Again, a “-” represents no hits in that

slot. The numbers and letters, however, have a

different meaning: they are the count of hits in the

slot divided by 32, represented in Radix-32. In other

words, “1” means anything from 1-32 hits, “2”

means 33-64 hits, up to “W”, meaning 993 to 1024

hits. This is a way to make a compact text-only

histogram.

This scan is an example picked from our real

world logs. Experience has shown that this kind of

scan is usually generated by the options of the

NMAP tool in TCP connect() scan mode, plus

some other “probing around” – that is, when we

scan ourselves using NMAP, the shape of the

histogram is quite similar.

The current version of the tool does not show the

exact targets of the port scans, although we can get

that information from other subreports. We are

currently working on making the syntax for

specifying nested subgroupings generating their own

counts, histogram graphs and subreports – and

making them fully graphical. What becomes clear is

the vast space for analysis criteria.

A non-obvious characteristic of this port scan

detection scheme is that it does not expect the scan

to be in increasing port number order like many

other port scan detector tools do. Modern port scan

detectors randomize the order they try the ports, but

since our technique counts the total number of

distinct ports, it catches these cases perfectly well.

The somewhat arbitrary decision that a port scan

is when we get connections to more than 60 distinct

ports is certainly debatable, but perfectly

configurable. While analyzing single-day log files, it

has been found to be quite acceptable. It is planned

that future versions of our tool will allow for

complex expressions to calculate this threshold.

It is interesting to apply the tool and these

techniques for very large log files – actually, we are

working a version in which the state tables are

stored on disk as B-trees, so as to be able to analyze

month-long logs and bigger. Our preliminary results

show several unexpected features, like distributed

slow port scans.

4 REAL-TIME APPLICATIONS

The ideas described above were used to

implement a batch log analysis tool: the log files of

a certain period, typically a whole day, were

collected and a report was produced. While this

makes for interesting reading, it’s natural to think of

the next steps:

• Firewall devices could already analyze and

report their data in this “stateful/correlating”

1920: 200.231.88.116 (1761)
CDEEDD0E897187536425563087553473305-6C84D6C86C6A6135759553366538
ECC7---39---

Figure 1

way. Actions could even be taken based on

conclusions regarding the correlation analysis.

The difficulty with this idea stems from the fact

that the state tables take a lot of memory. Strict

expiration and discard policies for the table

entries should be applied to keep them within

reasonable bounds. It could also be argued that

the increased memory demand could make the

firewall more vulnerable to resource exhaustion

attacks. Performance might also become a

problem in very fast networks and slow

processors.

• Intrusion Detection Systems might be a better

candidate for this kind of analysis. Some of

them already perform a some kind of stateful

analysis and correlation, but most of them

usually limit themselves to analyze the packet

contents in search of known common attack

signatures.

•

At the very least, firewalls should log more

data, like connection termination; related

connections caused by application-layer

handlers; the exact identification of the

application handler and the endpoint

negotiation it detected; perhaps even the

complete transport and network headers and the

beginning of the payload – the goal being to

make the log analyzer capable of accurately

reconstruct the actions taken by the firewall and

the interaction between the communicating

parties.

5 CONCLUSIONS AND FUTURE WORK

This work showed that the same techniques used

by stateful firewalls to filter the traffic can be

applied to the field of log analysis. The

characterization technique has been applied to

expose several kinds of security-related incidents,

such as reverse connections and covert channels.

Many other types of anomalies, not necessarily

security-related, can also be flagged.

Some inconsistencies and omissions in the way

common stateful inspection firewalls generate their

logs have been presented, especially regarding the

stateless handling of ICMP packets, the omission of

related application-level connections (FTP being

the typical example). Most log files fail to provide

enough information to accurately reconstruct their

actions and some improvements were suggested.

It has also been shown that state tables can be

used to draw histograms or perform statistical

characterization of the traffic that could be used to

detect security-related probing, such as port

scanning, or anomalous traffic patterns.

The tool implementing these techniques makes

its analysis in batch mode, operating on a large text-

mode log file. It was originally conceived both as a

forensic analysis tool and a daily summarizer to be

run along the log file rotation and archival process.

However, it has been shown that the correlation

techniques may also be implemented directly in the

firewalls or in intrusion detection systems. A

worthwhile goal in sight would be to produce

patches to IPTables or Snort to achieve this.

Another avenue of work being pursued is the

statistical characterization of port scans and

signature-based recognition of the tools that

produced the scan – we would like our tools to be

able to say something along the lines of “this

anomaly is consistent with a NMAP connect()

scan”.

6 REFERENCES

iptables(8) man pages.

Phoneboy’s Firewall-1 FAQ: www.phoneboy.com

Project Loki: ICMP Tunneling www.phrack.org

 Snort IDS: http://www.snort.org

AMOROSO, Edward. Intrusion Detection – An

introduction to Internet surveillance,

correlation, trace back, trap, and response.

AT&T Laboratories. Intrusion.Net Books, 1999,

ISBN 0966670078.

CHECKPOINT Software Technologies Ltd.,

Checkpoint Firewall-1 Architecture and

Administration, 1998, Part No 71300001400.

NORTHCUTT, Stephen, Network Intrusion

Detection: An Analyst's Handbook, 2
nd

 Edition,

2000, New Riders Publishing, ISBN

0735710082.

SPITZNER, Lance, Understanding the FW-1 State

Table: How Stateful is Stateful Inspection?,

http://www.enteract.com/~lspitz/fwtable.html

STEVENS, W. Richard, TCP/IP Illustrated,

Volume 1 – The Protocols, Addison-Wesley,

1994, ISBN 0-201-63346-9.

