
IMPROVING THE DICEWARE MEMORABLE PASSPHRASE GENERATION SYSTEM
Marco Antônio Carnut (kiko@tempest.com.br)

Tempest Security Technologies
Evandro Curvelo Hora (evandro@tempest.com.br)

Universidade Federal de Sergipe – DCCE/UFS

ABSTRACT
This paper describes the Diceware method for making randomly chosen passwords easy to memorize and suggests several

changes to the original scheme to make it even easier with little or no loss of security, along with a system to help users to recover
from partial mistakes when recalling their passphrases. Two implementations in real world scenarios are discussed as well. It is

argued that by using this method, ordinary dictionary attacks become uneffective.

1 INTRODUCTION
Passwords are still the primary mechanism most
computer sytems employ to authenticate users;
alternative methods like biometrics or tokens lag far
behind in popularity and are often combined with
passwords anyway. Over the years there has been
significant evolution in password protection algorithms
– in the Unix-like operating systems, the aging
crypt(3) algorithm [1, 2] has been replaced by
MD5Crypt [3], eksblowfish [4]; in Windows, the
broken from the start LMHASH algorithm [5] has
been replaced by Kerberos [6].
However, experience has shown that the users are the
weakest link because they tend to choose easily
guessed passwords. Several tools are available to
perform guessing attacks on password databases, such
as LMcrack [11], LC5 [12], John the Ripper [13],
Crack [14]. System administrators have been trying to
impose password restriction policies to try to foil those
attacks, such as requiring that passwords satisfy certain
minimum complexity rules (say, minimum of seven
characters with at least one non-alphanumeric
character and one numeric character) or requiring that
passwords be changed often.
The effectiveness of these measures is debatable: the
authors’ practical experience with the aforementioned
cracking tools has been that 20-30% of passwords in
average can be recovered in a few hours when access
to the encrypted password databases is gained; forcing
users to change passwords too often also backfires:
users tend to create simple password series such as
“john03”, “john04”, and so on. Trying to force users to
use too complex passwords often causes them to write
them down in post-its stuck in their monitors.
This paper proposes a password suggestion system for
helping users to create memorable random
passphrases. It is an improvement of Arnold
Reinhold’s Diceware system [7]. The core of the idea
is to use a dictionary to translate random numbers into
common words user can more easily remember.
Another particular characteristic of the Diceware
method is that it is was originally meant to be made by
hand, not by computers, using pencil, paper and
common dice (such as the one used in board games or
gambling). It is easy to underestimate how powerful

this approach is to explain to non-technical users the
importance of choosing their passwords randomly.
The rest of this paper is organized as follows. Section
2 reviews some terminology and attack scenarios and
security design concerts for password systems. Section
3 presents the classical Diceware method and, out of
discussing its shortcomings, proposes our modified
version. Section 4 shows the method in action in two
implementations, detailing the careful user interface
details that help the user to memorize the passphrase
both when choosing it for the first time and when
using it to authenticate. This section also presents a
proposed method to make the authentication correct
small mistakes users typically make in their first
attempts to recall a passphrase; it has been proven
essential to foster our system’s adoption. Section 5
wraps up presenting conclusions and ideas for follow-
up work. The appendix shows our proposed Diceware
dictionary.

2 PASSWORD SECURITY CRITERIA

2.1 Choice Sets
The larger the multitude of possibilities we draw our
passphrase choice from, the less likely it is for an
adversary to guess it and the larger the number of
attempts she will have to make in a brute force attack.
The choice set is the set of all possible passphrases
users can choose from in a specific computer system,
program or usage context. For instance, the classical
Unix login system accepts passphrases of at most eight
characters that may be typed from a standard computer
keyboard.
A fundamental operation is to compute or estimate the
size of the choice sets. In this example, we assume for
sake of simplicity there are about 96 typable characters
(ASCII codes from 32 to 128 comprising all uppercase
and lowercase letters, numbers, space and several
punctuation signals). In this case, we would have 968 =
7.2 × 1015 possible passphrases.
We will follow the common practice of assuming that
users choose passphrases from the set equiprobably, at
random. We know from experience that this is not
true: users tend to choose common dictionary words,
proper names, dates or phone numbers familiar to
them. For all practical purposes, however, we can say
that choosing nonrandomly from a large choice set C

(say, the acceptable Unix passphrase set with its
almost 1016 elements) is equivalent to choosing
randomly from a suitably chosen, much smaller set C’
(say, the set of all dictionary words and proper names,
estimated to have around 300,000 elements). The
“familiarity” effect would be translated as a drastic
reduction in choice set composition and size as much
as to make the particular choice within that set look
random to an outsider.
Our goal is to make the choice set so large as to render
the attacker’s efforts too time-consuming, while
keeping its elements reasonably familiar to the users.
The size of choice set is often expressed as the number
of binary bits needed to count all their elements; this is
given by log2 |C|. Since we are assuming a random
uniform distribution, this number is the same as the
concept of entropy in information theory: it measures
the “unpredictability” of the choice. Besides, this is
convenient, as it avoids large numbers – for instance,
the 7.2 × 1015 we calculated earlier become 57.2 bits of
entropy.

2.2 Attacks

2.2.1. Computational attacks
Theoretically, it is always possible to discover which
passphrase the user chose by means of the following
algorithm, called the exhaustive search attack, or,
more informally, the “brute force” attack:

algorithm exhaustive-search(C)
 for all p in C do
 if is_correct(p) then return p
 return NULL

That is, we try all possible plaintexts and until we find
the one that tests to the value we know. The best case
scenario is when the correct passphrase is the very first
one attempted, when the algorithm finishes almost
instantly. In the worst, case, however, it will take time
k|C|, where k is the time it takes for the test algorithm
to run once (and assuming it’s constant, which, in
practice, it usually is). This is why theoretical
computer scientists say that this algorithm takes time
proportional to the size of the key space, or, in other
terms, exponential in the number of entropy bits.
The algorithm assumes that we know the choice set
and that we have a function that tests whether a given
attempt is correct or not. It is fair to assume that we
always have access to the test function in the form of
the process that actually tests the passphrase while
authenticating to the desired service – be it the logon

dialog in a window system, the PIN-entry screen in an
ATM, the encryption function in a passphrase database
(say, Unix’s /etc/passwd, or /etc/shadow), or
a network-based authentication protocol.
We assume that we can use the test function for as
long and as many times as we want. This is not true in
many scenarios: for instance, ATM PIN entry screens,
certain system logon dialogs and a number of network
protocols limit the number of attempts to just a few,
like three or four, before locking out access for some
time or requiring administrator intervention to reset the
account. However, if we somehow obtain the
passphrase database and the encryption function, our
assumption holds – these are called offline attacks.
If the choice set we feed to the brute force algorithm is
the same as the domain of the test function, the
algorithm will always succeed if given enough time.
The special case where the choice set is a very small
subset of the domain of the test function, say, based on
a dictionary of common words, is often called the
dictionary attack. It is still a “brute force” attack in the
sense that it tries lots of possibilities, albeit far less
than the exhaustive search. As any attack that doesn’t
try the full domain, it is not guaranteed to succeed.
Whether it’s practical depends on several factors: how
big the key/choice space being tested is; the time each
attempt takes – the proportionality constant k – which
might be improved by optimized implementations,
better hardware or networking, etc. The realization of
the brute force algorithm can vary immensely in
sophistication, ranging in hardware from a single
commodity PC to a massive parallel computer with
dedicated ASICs implementing the test algorithm.
Resisting to offline attacks is much harder because it
reduces the issue to a computational problem and the
attacker can optimize the hardware to run the brute
force algorithm at blazing speeds. In other words, the
attacker isn’t limited by any tricks the defender can put
in place to make k deliberately large (say, imposing a
delay between attempts or lock-outs) and can do her
best to make k as small as possible by using better
hardware and perhaps better algorithms as well.

2.2.2. Physical or environmental attacks
Passphrases can be captured when being typed, either
when it’s being chosen for the first time or when the
user is being challenged to authenticate, using a variety
of methods:

(a)

(b) (c) Figure 1: In (a), we see a miniaturized
hardware keylogger with a quarter dollar coin
for size comparison. In (b) we see the
computer’s keyboard cable before the device
in installed and in (c) after. Since most of the
time users don’t care to look at their
computer’s cabling, such a device can pass
unnoticed for long periods. It has 64KB of
non-volatile memory that records all
keystrokes coming from the keyboard to the
computer. The attacker can later retrieve the
device and examine the memory contents for
passwords and similar sensitive data.

• Hardware keyloggers: usually a small device
that connects between the computer and the
keyboard, recording in non-volatile memory the
keyboard data. The attacker has to have physical
access to the computer to install and retrieve them,
but this is a small hinderance. Besides, since
current versions of the device are quite small
(about the size of a mini-DIN connector) and they
do not interfere with the normal working of the
computer, they’re almost imperceptible – most
users really don’t look at the cables at the back of
their computers very often. Thus, most users
won’t find it unless if specifically told to look for
them. Figure 1 shows one such setup.

• Software keyloggers: computer programs that
attack to the hooks the main event loops in
window systems or the kernel keyboard drivers.
Although they usually are presented as standard
executable files, it is often easy to trick the users
into executing them by embedding them within
another program or package. Quite a few viruses
and worms also have integrated keyloggers as part
of their payload. Most of them also record context
information, such as the title of the window to
which the specific keystrokes events were
delivered. They can usually send the captured data
to the attacker over the network.

• Shoulder surfing: the term usually brings up the
image of a nosey snooper ostensibly looking over
our shoulders while we type the password. For our
purposes in this paper, we also include in this
category less perceptible variants of the attack,
such as being filmed by a hidden video camera
strategically positioned to have the keyboard and
possibly the screen as well within its field of view.
With the miniaturization of video recording and
transmission hardware, this attack has become a
big deal in the banking industry’s ATM machines.

3 THE DICEWARE METHODS
The Diceware passphrase generation method [7] was
originally designed to be performed by hand using dice
(the ordinary 6-sided ones from board games or
gambling) as random number generation. A set of n
ordinary cubic dice are tossed and their numbers are

dictionary. This method offers a few attractive
advantages:
• Easy to

used to pick a word from a table, called the

 understand and explain: as we saw

• in a computer: arguably

•

The er word,

the

 words

above, it can be explained in a few sentences and
makes intuitive sense even to laymen. As can be
seen in the appendix section in the end of this text,
the full dictionary and the algorithm fit in a single
page. The use of dice pedagogically stresses the
importance of the randomness instead of a
psychological choice.
Simple to implement
the hardest part is the pseudo-random number
generator; however, there are several good ones
widely available. The rest is a trivial table lookup.
Generates easy to remember passwords: with a
properly designed dictionary it is possible to
“translate” the random numbers into common
words, making them easier to memorize.
recommended setup uses a 5 dice toss p

yielding 65=7,776 possible values, which are also the
number of words in the dictionary. Using the
recommended 5 words, we get that the size of the
choice set is 7,7765, yielding 64.62 bits of entropy.
However, the dictionary recommended by
Diceware authors comprises words with different word
lengths, ranging from 1 to 6 characters per word; the
exact word length distribution is shown in the table
below. This means that the resulting passphrase may
be anything from 5 to 30 characters in length (or 10 to
35 if the words are separated by spaces; for most of
this paper we will ignore word separators in
passphrase length calculations).

Word length # of
1 51
2 784
3 853
4 2346
5 3111
6 631

Thus, the passphrase len can be partially gth used to
deduce its composition and reduce the amount of
possibilities a exhaustive search attack would require.
Let’s take an extreme example to illustrate the issue:
suppose the passphrase we want to attack has 5

characters. The only way this can happen is all words
are single-character ones. Since there are only 51 such
words in the dictionary, have have only
515=345,025,251 possible 5-character passwords or
mere 28.36 bits of entropy – trivial prey for a brute-
force attack. However, the probability that such a
passphrase may actually happen (again, assuming
unbiased dice with uniform distributions) would be
quite rare: 515/625=1.2 × 10-11.
Proceeding with the example, suppose now we have a

re are 784 words with length 2 in the

 k

er passphrases now confront us

r a diceware

j i
jij wlpdklE

1 1
,2)),((log)(

Where p ,j(l,w) is the ith element of the jth w,m-

e equations we can compute the entropies

6-character passphrase. This implies it is comprised of
one 2-character word and 4 single-character words.
Unlike the previous case, we have a non-uniform
composition: the 2-character word may happen
anywhere, so there are in fact five possible
permutations.
Given that the
dictionary and, as we saw earlier, 51 single-character
words, we have 5 possible permutations times 784
times 514, yielding 26,519,587,920 possibilites or
34.62 bits of entropy for a probability of 9.3 × 10-10.
A k,l-partition of a positive integer n is a set of
strictly positive integers equal to or less than l whose
sum is n. As we saw in the first example above, there
is only one 5,6-partition of 5: {1,1,1,1,1} or
5=1+1+1+1+1. The second example showed that there
is also only one 5,6-partition of 6: {2,1,1,1,1} or
6=2+1+1+1+1.
Now, seven-charact
with two possible 5,6-partitions: 2+2+1+1+1 or
3+1+1+1+1. So, for the first one we have 784 × 784 ×
51 × 51 × 51, all that times 10 (this last value is the
number of permutations of {2, 2, 1, 1, 1}), yielding
815,347,330,560. For the second, we have 853 × 51 ×
51 × 51 × 51 times the 5 possible permutations of {3,
1, 1, 1, 1}, resulting in 28,853,582,265. Adding these
two values we have 844,200,912,825 for the size of the
subset of all possible seven-character, five-word
diceware passphrases, corresponding to an entropy of
39.62 bits and a probability of 3 × 10-8.
More generally, the entropy estimate fo
passphrase with lengh l and w words is:

jn w

∑ ∏
= =

=

i
partition of l with exactly w elements and with m being
the maximum word length and d(x) being the number
of words with length x in the dictionary. The quantity
kj is the number of permutations of the corresponding
pi,j(l,w) and nj is the number of w,m-partitions of l
there are.
Using thos
and probabilities for all passphrase lengths from m to

wm; in the classical diceware method, for passphrases
ranging from 5 to 30 characters:

Length Entropy Leak Prob %
5 28.36 36.26 1.21E-09
6 34.63 29.99 9.33E-08
7 39.62 25.00 2.97E-06
8 43.71 20.91 5.06E-05
9 47.03 17.59 0.0005

10 49.65 14.97 0.0031
11 51.78 12.84 0.0136
12 53.69 10.93 0.0513
13 55.33 9.29 0.159
14 56.76 7.86 0.429
15 58.01 6.61 1.023
16 59.08 5.54 2.145
17 59.99 4.63 4.023
18 60.73 3.89 6.739
19 61.30 3.32 10.016
20 61.71 2.91 13.254
21 61.93 2.69 15.447
22 61.94 2.68 15.58
23 61.73 2.89 13.452
24 61.25 3.37 9.616
25 60.39 4.23 5.305
26 59.04 5.58 2.091
27 57.13 7.49 0.553
28 54.54 10.08 0.0921
29 51.13 13.49 0.00867
30 46.51 18.11 0.000352

The above table reveals that with a probability of
15.6%, the most common passphrase length is 22
characters and it has 61.94 bits of entropy – 2.68 short
of the ideal 64.62. In order words, the fact that we
know the passphrase length “leaks” a certain amount
of its entropy: around 3 to 6 bits for the most common
passphrase lengths, but sometimes a lot more.
The diceware method FAQ suggests that if we ever get
a passphrase with 14 characters or less, we should
scrap it and choose another one. This prevents most
large leaks while making just 0.65% of the choice set
unavaliable. However, it does not handle the
considerable leaks for 27 or more characters – which,
also happening to cover about 0.65% of the keyspace,
are not all that rare.
This is the first drawback of the diceware method with
variable-length dictionaries: they have less entropy
than it may appear. In the specific case of the 5-word
passphrase with the 7,776-word Beale wordlist, it is at
a minimum 22.68 ≈ 6.41 times weaker than it could be if
its wordlist was made of fixed-length words.
Another drawback comes from the fact that many
words in the dictionary are not widely-known words in
English, but numbers, symbols and abbreviations like
“25%”, “3000”, “2nd”, “5/8”, “9:30”, etc. This is
probably due to the fact that selecting seven thousand
words with six characters or less while striving to
choose only common ones turns out to be more
challenging than it may appear at first glance (as any
Scrabble player can confirm), so the dictionary authors

used those abbreviations to fill in the missing gaps up
to the required 7,776 words.
The same reasoning reveals similar drawbacks in John
Walker’s JavaScript-based passphrase generator [8]:
first, its 27,489-word dictionary has words from 1 to 8
characters. Computing the maximum entropy from the
word length distribution yields 85.34 bits, 3.14 bits shy
from the ideal 88.48 for the recommended 6-word
passphrase. While 88.48 bits seems more than enough
to resist offline attacks for the forseeable future, the
average length of those passphrases is a whooping 39
characters – it is hard to convince users to type such
long passphrases.

3.1 The Modified Diceware Method
We then introduce a few modifications to the diceware
method to address its shortcomings while preserving
its essence – in particular, its link with a real world
physical process. The changes are as follows:
• Smaller dictionary: we use a wordlist with

64=1,296 word, yielding log2 64 ≈ 10.34 entropy
bits per word. The smaller number of words
makes it a lot easier for dictionary designers to
select more common, familiar words, not only in
English but with other languages as well.

• Fixed-length words: as a result of the smaller
dictionary, we could make all words have only
four characters. This makes the full passphrases

always 24 characters long, for a fixed entropy of
62.04 bits – slightly more than the best entropy of
61.94 from the classic method. The disadvantage
is that passphrases are now two characters longer
than the average classic ones.

testuser@testbox:~$ dwpwd
Current passphrase: oldstyle

Figure 2: The dwpwd utility, our
drop-in replacement for the classical
Unix passwd utility, in action.
System output is shown in normal
font, echoed user input is in bold
and non-echoed user input is in
bold-italic. In (1), the user types the
previous “old-style” password, as
usual. In (2) we see the choice
selection phase with the twelve
randomly chosen suggestions.
Several are shown so that a casual
shoulder surfer can’t trivially tell
which one the user chose from. In
(3) we see the the beginning of the
practice phase with instructions for
navigating the suggestion history
and generating new suggestions.
There we see the our test user
choose a passphrase inspired by
suggestion 3 (which by chance and
with some interpretation freedom
may be regarded as a meaningful
sentence), but which a small
variation or spice. Step (4) shows
the user making a typo and having
to start over. Steps (5) to (7) show
the user carrying on to successful
completion.

Choose: below we have 12 passphrase suggestions (more if you think of columns
------- instead of just rows). Choose one you find the easiest to memorize:

 1: pion mega roll duck week give 7: bald arcs gust luck tang muse
 2: knee deli eros lacs lack side 8: wave arak hold pigs grew grid
 3: wait year navy said best yale 9: pelt wild palm dogy shot into
 4: pill anti cows jerk that peas 10: void bulk tony anil says word
 5: mail tied cyan baby kiwi moon 11: ruse rush oval pant hall know
 6: warn look pays acne cove debt 12: deco that dots dive axis hush

* Tip: take your time. Don't try to choose in a hurry.
* Spicing: if you like, add small variations to the suggestion you chose.

 --- Press ENTER when ready to practice or ^N for more suggestions ---

Practice: Type the full passphrase you chose (not just the choice number)
--------- a few times to help you and your fingers to memorize it.
 At any time: ^Y goes up in the suggestion history, ^V goes down,
 ^N generates new suggestions, ^D aborts.

New passphrase: wait year navy said best ale
** Nice. It does look like one of the suggestions above.

Please confirm: wait year navy said beat ale
** Odd. You didn't type the same thing exactly. Let's start over, shall we?

 --- STARTING OVER ---

New passphrase: wait year navy said best ale
** Nice. It does look like one of the suggestions above.

Please confirm: wait year navy said best ale
** Good. Let's try just once again to make sure, ok?

Confirm again: wait year navy said best ale

** Congrats. You typed it consistently right.
** Passphrase updated succesfully.

The resulting regular structure of the passphrase brings
other advantages. First, it helps memorization: when
the user is in doubt whether how a particular word is
spelled or whether it is in singular or plural form,
he/she can count on choosing the version with four
characters. Second, as the words are purely alphabetic,
with no numbers or accents, it is easy to become
proficient at typing them very quickly, helping to
defeat shoulder surfers and providing a slight but non-
negligible edge against filming.
The question of whether 62.04 bits of entropy is
acceptable is certainly debatable. In [9], several expert
cryptographers recommend 75 to 90 bits as the
minimum size a cryptographic key should have to
offer commercial-grade security. It is important to put
this advice in perspective: they were referring to the
raw keys used in low level encryption algorithms.
Modern password-hashing algorithms include
deliberate slowdowns to make brute force attacks
harder; MD5Crypt, for instance, runs the passphrase
through 1000 iterations of the MD5 algorithm. Most
password-based encryption systems use a key
derivation function (KDF) with many encryption

rounds both to “fill up” the low level encryption key to
the maximum number of bits allowed by the specific
algorithm; this is the case of the OpenSSL KDF used
then encrypting RSA or DH private keys.
On the other hand, 62.04 bits is 9.3 bits (about 600
times) stronger than the 52.7 for 8-typable character
password we calculated in section 2. We thus argue
that 62.04 bits is a reasonable balance between the
several conflicting goals we set out, with a explicit
bias towards usability by a non-technical user base,
even at the cost of computational security. There is no
point in making the system extra-secure if the users
don’t buy it.
Extra security, however, can be easily attained by at
least two methods: first, we can always add more
Diceware words, accumulating entropy at a rate of
10.34 bits per word. Another is by spicing the
passphrase: the user introduces small changes to the
passphrase, like deleting, adding or replacing one or
two characters, effectively sending it out of the set of
diceware passphrases.
Even small changes add considerable entropy.
Consider the simple case of deleting a random
character: including spaces between words, the deleted
character can be one in 29, or about 4.8 bits.
Appending an alphanumeric character (either
uppercase, lowercase or a number) to the end of the
passphrase adds 5.8 bits of entropy, while inserting it
at a random position adds about 4.8 bits for the
uncertainty of the position, yielding 10.5 bits. So, in a
strict sense, a 6-word diceware passphrase spiced by
changing a single character is stronger than a 7-word
diceware passphrase, however counterintuitive this
may sound.
Of course, we know that users aren’t good at making
random choices. When asked to spice their passwords,
most users do obvious things like changing
“o”s (the letter “o”) by “0”s (the number zero) or the
like. So we usually recommend that the user spice their
passphrases by deleting one character and changing
another. If chosen randomly, that would yield 15.3
more entropy bits. In our empirical tests, we could
often find the spiced version from the non-spiced in
around 1000 “mini-brute-force” attempts, or slightly
less than 10 bits of entropy.
It is worth to notice that if an attacker adopts the naive
idea of specifying the choice set based on characters,
his work becomes much larger: if he only considers
uppercase characters, he would have 2624 possibilites
or more than 112 bits of entropy.

4 APPLICATIONS AND IMPLEMENTATIONS

4.1 Application in a console environment
We wrote a program called dwpwd to be a version of
the classical Unix passwd utility that uses our
modified Diceware method for suggesting passphrases

and test the user’s reactions in a text-based console
environment. Figure 2 shows an example for a dwpwd
session. After verifying that the user knows the current
password, it takes the user through two-phase process:
choosing a passphrase suggestion and practicing
his/her choice.
It is important to notice that the program actually
accepts whatever passphrase the user types, even if the
user’s choice doesn’t have anything to do with the
suggestions, as long as it complies with the minimum
quality restrictions set in the utility’s configuration
file.
For sake of brevity, figure 2 didn’t show a few other
tricks the program implements. For instance, it
measures user’s typing speed and if it is found to be
over 15 characters per second, a message is shown
saying that copying and pasting won’t help
memorization – after all, the program may be run from
a terminal that supports clipboard operations. The
program also prints a warning message if the CAPS
LOCK key is on – now a common trait in graphical
password dialogs but that we haven’t seen before in
console programs.
By default, the program clears the screen at the start of
the practice phase – forcing the user to actually recall
the passphrase from memory instead of just reading it
onscreen and retyping it. All suggestions are held in a
history buffer and the user can navigate up or down as
desired; furthermore, a new set of suggestions can be
generated at any time, so that the user can peruse them
at will and choose a passphrase he/she deems easier to
memorize.

4.2 Application in a graphical environment
Figure 3 shows a GUI version of the passphrase choice
process in the scenario we originally intended:
encrypting private keys stored in disk. The most
noticeable difference is that the process is split in two
windows: the first is a classical passphrase change
window with a quality meter and a button to go to the
second window with the password suggestion and
training system. Thus the user adopts the diceware
passphrases only if he/she wishes.
The suggestions window sports most of the features
we’ve already discussed for the console version also
work: the user is warned about the CAPS LOCK key,
cheating by using copy-and-paste is frowned upon, the
user can spice the suggestion at will or not follow them
at all. A minor difference is that instead of clearing the
screen, the suggestions become asterisks every time
the user types a character in the practice area. The user
can see them again by clicking on the appropriate
toggle.
A confirmation message shows whether the user has
typed the exact same password as in the previous
attempt even before the user presses ENTER to

 (a) (b)

 (c) (d)

Figure 3: GUI version of the suggestion system when changing the private key protection passphrase in a PKI application. In (a) we see the user
after he typed the current passphrase and clicking the button to get passphrase suggestions. The user could opt to not use the suggestion system at
all, in which case he would be helped by the passphrase quality meter. Normally the meter will reject the passphrase if it is not within the
“GOOD” range, but the user has the chance to override this restriciton as well by disabling in the “Enforce quality restrictions” checkbox. In (b)
we see the suggestion dialog box displaying ten randomly drawn Diceware passphrases so that a casual shoulder surfer can’t trivially tell which
one the user is choosing from. Notice that the “Ok” button starts disabled. Whenever the user types a character in the practice area, the “Show
Passphrase Suggestion” pushbutton is automatically released, causing all passphrases to be turned to asterisks and thus requiring the user to
proceed from memory. The user can toggle the pushbutton at any time to peruse the suggestions some more, but the next character typed will
release it again. In (c) we see the user typing the same passphrase correctly for the third time. The screenshot was captured right when the tenth
suggestion text was blinking to indicate a (possibly inexact) match. At this moment the “Ok” button enables, allowing the user to go back to the
previous window, shown in (d). The selected passphrase is copied to the “New Passphrase” text field, but the user still has to confirm it yet again.
Notice that the Diceware passphrase easily scores good with the quality meter.

confirm. When the user confirms a passphrase by
pressing ENTER and it is the same as the previous
one, a “correct attempts” counter is incremented.
Otherwise, the program assumes the user is confused
and starts over, zeroing the counter. When the counter
reaches a predetermined number of correct attempts
(three, in our example), the “Ok” button is enabled (it
starts disabled). At this point the user can continue
practicing if desired, but clicking on the “Ok” button
brings the program back to the previous window with
the “New Passphrase” field already filled with the type
passphrase. The usen then has to confirm it one last
time in the “Confirmation” text field; a text message
provides interactive feedback on whether the two
passphrases match and whether the quality meter
accepts or rejects the passphrase.
When the passphrase is finally validated, it is passed
through the standard OpenSSL key derivation routine
to transform it into an appropriately sized key to the
symmetric encryption algorithm that will encrypt the

private key. In this application we chose the Blowfish
algorithm [10] because its deliberately expensive key
schedule makes it one order of magnitude harder to
brute force than 3DES (the OpenSSL default).
After that, a list of degraded passphrases is generated
from the main passphrase, generated as follows:
• Sorted passphrases with one word discarded:

The passphrase is split into w words (a word is
considered any span of characters separated by
spaces or puntcuation; accented characters are
converted to their non-accented counterparts). The
resulting words are sorted in alphabetical order.
Then w passphrases with w-1 words are appended
to the list by joining the words again with a space
separator but each time dropping one of the
words. Thus, if the main passphrase is “show debt
full goes gore does”, the following degraded
passphrases would be inserted to the list:

 does full goes gore show
debt full goes gore show

debt does goes gore show
debt does full gore show
debt does full goes show
debt does full goes gore

es with one character dis
d punctuation are removed fr

• Passphras carded:

tfullgoesgoreshow

doesdebtfullgoesgoreshw

The list of de erated if the

ice (usually one character).

Spaces an om the
passphrase, resulting in a string with length l.
From that string, l degraded passphrases with
length l-1 are inserted to the list by dropping one
character at each iteration. For the same example
passphrase above, our degraded passphrases
would become:

oesdebtfullgoesgoreshow
desdeb
dosdebtfullgoesgoreshow
doedebtfullgoesgoreshow

. . .

doesdebtfullgoesgoresow

doesdebtfullgoesgoresho
graded passphrases is not gen
ords in the main passphrasenumber of w is less than

six or if the number of characters is less than 20.
Each degraded passphrase in the list is appended with
a 12-bit private salt (a random number, independently
drawn for each degraded passphrase) and then sent to
the OpenSSL key derivation routine to serve as
encryption key to the Blowfish algorithm. The
message being encrypted is the main non-degraded
passphrase. The resulting block of encrypted messages
are saved in a file along with means to associate it to
that specific private key.
As the reader may be guessing by now, the purpose of
the degraded passphrase file is to help the program to
recover the full passphrase if the user later mistypes it
in certain ways, but without at the same time
facilitating the attacker’s job. This was motivated by
the fact that in early field testing, we noticed that many
Diceware users often made small mistakes when using
their passphrases for the first time (sometimes mere
seconds after setting them up). The most common
errors were:
• writing the words in the wrong order;
• forgetting one word;
• forgetting the exact sp
The picture below shows one of the dialog boxes that
request the passphrase to unlock the private key (that
particular example is for SSL client authentication [16]
to a HTTPS-capable website).

When the user types the passphrase and confirms the
dialog by either pressing ENTER or clicking on the
“Ok” button, the program first tries to decrypt the
private key using the supplied passphrase. If it
decrypts correctly, it means that the user entered the
exact password. In this case, a counter in the degraded
passphrase file is incremented. If it reaches a specified
limit (our implementation uses five), we assume that
the user has sucessfully memorized that passphrase, so
the program deletes the degraded passphrase file.
If the private key decryption fails and there is an
associated encrypted degraded passphrase file, the
program creates a list of candidate degraded
passphrases the same way it created the list of
degraded passphrases. Then it tries to decrypt each
candidate with each degraded passphrase in the file.
Notice that each decryption attempt has to do a mini-
brute force to find the correct salt among the 212=4,096
possible ones, since it is not stored anywhere. This
explains the purpose of the salt: it compensates for the
smaller entropy of the degraded passphrases by
making the each decryption attempt 2,048 times harder
on average. This idea is actually due to Manber [15].
If all the decryption attempts fail or there was no
degraded passphrase file, the window waves
horizontally to grab the user’s attention and a message
is shown telling the user that the passphrase is wrong.
The user can then either try again or cancel the whole
operation.
If, on the other hand, one of the decryption attempts is
successful, the correct passphrase is recovered. The
dialog box then shows the correct passphrase to the
user. The user will have to type it again to get through
(although we take care not to increment the success
counter in this case). This way, we reinforce the
correct passphrase in his memory.

5 CONCLUSIONS AND FUTURE WORK
We have described a set of improvements to the
Diceware passphrase generation system to make it
even easier to memorize, apply and use. We reasoned
how our system with fixed words achieves nearly the
same resistance to brute force attacks and argued that it
is comparable, if not outright superior, to many other
password policies in common use.
Arguably the greatest benefit our system brings is the
same provided by any random-password scheme: it

renders the classical dictionary-based attacks with less
that a few billion items unsuccessful – precisely the
attack that used to be most successful in practice. Our
contribution is making them easier to remember and to
use in practives and thus opening the path for more
widespread popularity.
Space constraints prevented us from discussing
preliminary data from field experience with end-users
and experiments with variations in the user interfaces
to provide countermeasures against hardware and
software-based keyloggers. These may make fertile
ground for future papers.

6 ACKNOWLEDGEMENTS
Thanks to Victor Hora for the endless hours tweaking
the dictionaries to remove obscure words and make
passphrases don’t look too weird overall.
Scrabble is a registered trademark of Hasbro, Inc. and
J.W. Spear & Sons.

7 REFERENCES
1. R. Morris and K. Thompson, Password Security:

A Case History, Communications of the ACM,
Vol.22, No.11, November, 1979, pp.594-597.
http://citeseer.ist.psu.edu/morris79password.html

2. David C. Feldmeier & Philip R. Karn, UNIX
password security – ten years later, Proceedings
of the UNIX Security Workshop (August 1989),
http://www.ja.net/CERT/Feldmeier_and_Karn/cry
pto_89.ps

3. Poul-Henning Kamp, MD5 based password
scrambler, http://people.freebsd.org/~phk/

4. N. Provos & D. Mazières, A Future-Adaptable
Password Scheme,
http://www.openbsd.org/papers/bcrypt-paper.ps

5. Urity, Cracking NTLMv2 Authentication
http://www.blackhat.com/presentations/win-usa-
02/urity-winsec02.ppt#256,1,Cracking NTLMv2
Authentication

6. Microsoft Inc., Windows 2000 Kerberos
Authentication White Paper,
http://www.microsoft.com/windows2000/techinfo/
howitworks/security/kerberos.asp

7. Arnold G. Reinhold, The Diceware Passphrase
Home Page,
http://world.std.com/~reinhold/diceware.html

8. John Walker, Passphrase Generator,
http://www.fourmilab.ch/javascrypt/pass_phrase.h
tml

9. M. Blaze, W. Diffie, R. Rivest, B. Schneier, T.
Shimomura, E. Thompson and M. Wiener,
Minimal Key Lengths for Symmetric Ciphers to
Provide Adequate Commercial Security,
http://www.crypto.com/papers/keylength.pdf

10. B. Schneier, Description of a New Variable-
Length Key, 64-Bit Block Cipher (Blowfish), Fast
Software Encryption, Cambridge Security
Workshop Proceedings (December 1993),
Springer-Verlag, 1994, pp. 191-204,
http://www.schneier.com/paper-blowfish-fse.html

11. Charles Gillman, LMCrack - Cracked in 60
seconds,
http://www.infosecwriters.com/hhworld/hh9/lmcr
ack.htm

12. @Stake, LC5 - The Password Auditing &
Recovery Application,
http://www.atstake.com/products/lc

13. Solar Designer, John the Ripper password
cracker,
http://www.openwall.com/john/

14. Alec Muffet, Crack 5.0,
http://www.crypticide.com/users/alecm/

15. Udi Manber, A Simple Scheme to Make Passwords
Based on One-Way Functions Much Harder to
Crack, 1994, Department of Computer Science,
University of Arizona,
ftp://ftp.cs.arizona.edu/reports/1994/TR94-34.ps

16. Eric Rescorla, RFC 2818: HTTP Over TLS, 2000,
http://www.faqs.org/rfcs/rfc2818.html

Appendix: The proposed Diceware-4 Dictionary for American English
Each four dice tosses selects one word. Use the two first dice to look up the row and the two last dice to look up word in the intersecting column. Repeat this process
six times or more to get a secure passphrase suggestion.

 1-1 1-2 1-3 1-4 1-5 1-6 2-1 2-2 2-3 2-4 2-5 2-6 3-1 3-2 3-3 3-4 3-5 3-6 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 6-1 6-2 6-3 6-4 6-5 6-6

1-1 abel able abut aces acid acme acne acts adam adds aden aeon afar afro aged ages ahoy aide aids ails aims aint aire airs airy akin ales alga ally alms aloe alps also alum amen amid

1-2 amir ammo amok amps anal anew anil anna anon ante anti ants aped apes apex apse aqua arab arak arch arcs area aria arid arks arms army arts arty arum asap ashy asia asks asps atom

1-3 atop auks aunt aura auto aver avid away awry axes axis baal babe baby back bags bail bait bake bald bale ball band bane bang bank bans bard bare bark barn bars bart base bash bask

1-4 bass bate bath bats best beta baud bawl bays bead beak beam bean bear beat beau beck beds beef been beep beer bees beet begs bell belt bend bent berk bets bevy bias bibs bide bids

1-5 bier bike bile bill bind bing bins bird bite bits blab blah blat bled blew blip blob bloc blot blow blue blur boar boat bobs body boer bogs bogy boil bola bold bole bolt bomb bond

1-6 bone bong bonn bony book boom boon boor boos boot bops bore born boss both bout bowl bows boys brag bran bras brat braw bray bred brew brig brim brio brit brow buck buds buff bugs

2-1 bulb bulk bull bump burn byte cake call came cane cars cats cave cent chin city clap clay clef cleg clip clod clog clot club clue coal coat coax cobs coca cock coda code cods cogs

2-2 coil coin coke cola cold cole cols colt coma comb come cone conk cons cony cook cool coon coop coos cope cops copy cord core cork corn cost cosy cots coup cove cowl cows crab crag

2-3 cram cran crap crew crib crim crop crow crux cuba cube cubs cuds cued cues cuff cull cult cups curb curd cure curl curs curt cusp cuss cute cuts cyan cyst czar dabs dace dado dads

2-4 daft dais dale dame damn damp dams dane dank dare dark darn dart dash data date daub dawn days daze dead deaf deal dean dear debt deck deco deed deem deep deer deft defy deli dell

2-5 demo dens dent deny desk dews dewy dhow dial dice died dies diet diff digs dill dime dims dine ding dint dips dire dirt dish disk diva dive dock docs dodo doer does doge dogs dogy

2-6 dohs dole doll dolt dome done dong dons dont doom door dope dopy dose dote dots dour dove down doze dozy drab drag dram drat draw dray drew drip drop drub drug drum dual dubs duce

3-1 duck duct dude duds duel dues duet duff duke dull dumb dump dune dusk dust duty each earl earn ears ease east easy eats echo eddy eden edge edit eggs eire elan elms else ends epic

3-2 eras ergo ergs eros euro even eves evil exam exit eyes face fact fade fail fair fake fall fame fans fear feat feds feed feel feet fell felt figs file fill film find fine fire firm

3-3 fish fist five flag flap flat flaw flew flex flip flop flow foal fogs fold font food fool foot ford fork form foul four foxy free frog from fuel full fume fund funk fury fuse gain

3-4 game gang gate gave gear geek gems gene germ gets gift gird girl give glad glow glue glut goal goat goes gold golf gone gong good goon gore goth grab gray grew grey grid grip grow

3-5 grub gulf gums guns guru gust guts guys gyms gyro hack hail hair half hall halo halt hams hand hang hard harm hate hats have hawk hear help here hero high hint hold hole home hood

3-6 hook i hope horn hose hour hull hurt hush icon idea idle inch into iron isle tem jail jaws jerk jets jobs joey john join joke joys judo july jump june junk jury just keen keep kelp

4-1 kelt kent kept kerb keys kick kids kiev kill kiln kilo kilt kina kind king kirk kiss kite kith kits kiwi knee knew knit knob knot know kudu labs lace lack lacy lade lads lady lags

4-2 laid lain lair lake l l lama amb ame lamp land lane last late lead leaf left less liar life lift like lime limo line link lion lips list live load loan lock loft logo logs long look

4-3 loom loop lord lore lose loss lost lots loud love luck luke lurk lust made maid mail main make male mall mama many mark mars mary mask mass mate math matt maze meal mean meat meek

4-4 meet mega melt memo menu meow mess mice mike mile milk mind mini mint miss mist mode monk mood moon more most move much mugs mule muse mush musk must mute mutt myna myth nabs nags

4-5 nail name nape naps nato nave navy nazi near neat neck need neon nerd nest nets news newt next nice nick nigh nile nils nine nips nits noah node nods none nook noon norm nose nosy

4-6 note noun nude nuke null numb nuns nuts oafs oaks oars oast oath oats obey oboe odds odes odor ogre ohio okay once ones only onto open oral orca ouch ours oval oven over pack pact

5-1 pads page paid pain pair palm pant park part pass past pate path pats paul pave pawn paws pays peak peal pear peas peat peck peek peel peep peer pegs pelt pens pent perk perl perm

5-2 pert peru pest pets pews phew pick pied pier pies pigs pike pile pill pimp pine ping pink pins pint piny pion pipe pips pisa pith pits pity plan play plea plod plop plot ploy plug

5-3 plum plus pock pods poem poet pogo poke poky pole poll polo pomp pond pong pony poof pooh pool poor pope port pull pump push raid rail rain ramp rats rave read real rear reef reel

5-4 rent rest rice rich rick ride rime rims ring riot rise risk road roar rock rode roll roof room root rope rose rows ruby rude rues ruff rugs ruin rule rump rune rung runs runt ruse

5-5 rush rusk rust ruth ruts sack sacs safe saga sage sago sags said sail sake saki sale salt same sand sane sang sank saps sash save sawn saws says scab scam scan scar scat scud scum

5-6 seal seam sear seas seat sect seed seek seem seen seep seer sees self sell semi send sent serf seth sets sewn sews sexy sham ship shoe shot show sick side sign silk silo sing sink

6-1 sins site sits size skin skip slam slap slim slip slow smog snap snow soap sock soda sofa soft soil sold solo some song soon sort soul soup spit spot star stay stop such suit sure

6-2 tabs tack tags tail take tale talk tall tamp tang tank tape taps task taxi team tear teas teen tell tend tens tent term test text than that them then they thin this thus tick tide

6-3 tied ties tilt time tint tiny tips tire toad toes tofu toga told tomb tone tons tony took tool tour town toys trad tram trap tray tree trim trio trip true tuba tube tubs tuna tune

6-4 turk turn twin type ugly undo unit upon urge used user uses utah vale vamp vans vary vase vast veil vent verb very vest vice view vile visa void vote wage wait wake walk wall want

6-5 ward ware warm warn warp wars wash watt wave ways weak wear webs week weep weld well wend went were west wham whap what whee when whoa wick wide wife wigs wild will wimp wind wine

6-6 wing wink wins wipe wire wise wish wisp with woke wolf wont wood woof word work worm wrap xray yale yank yard yeah year yens yoga yoke york your yoyo zero zest zeus zone zoom zulu

	INTRODUCTION
	PASSWORD SECURITY CRITERIA
	Choice Sets
	Attacks
	Computational attacks
	Physical or environmental attacks

	THE DICEWARE METHODS
	The Modified Diceware Method

	APPLICATIONS AND IMPLEMENTATIONS
	Application in a console environment
	Application in a graphical environment

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

