
 
 

1

STRATEGIES FOR DETECTING ARP SPOOFING ATTACKS 
[Version 0.98 – submitted to usenix security on Feb 1, 2004] 

Marco Antônio Carnut  (kiko@tempest.com.br) 
Tempest Security Technologies 

Centro de Estudos e Sistemas Avançados do Recife - CESAR 
Universidade Federal de Pernambuco – CIn/UFPE 

João J. C. Gondim (gondim@cic.unb.br) 
Departamento de Ciência da Computação 

Instituto de Exatas – IE 
Universidade de Brasília – UnB 

ABSTRACT 
This paper proposes strategies to detect ARP spoofing attacks in several scenarios: with passive sniffers on a hubbed network, by 
reprogramming the switches to catch the telltale signs of the attack and by trying to do the same without having to reprogram the 

switches, inferring the anomalies by noticing specific patterns on SNMP MIB-II traffic statistics counters. These elements are combined 
in an architecture general enough for practical implementation in production networks. Results from laboratory and real-world detection 

experiments using several popular attack tools are also presented. 
 

1 INTRODUCTION 

Conventional wisdom teaches that ethernet switches 
provide better security because they are supposed to 
forward traffic only to the appropriate port, without 
relaying it to unintended recipients where a passive sniffer 
may be in action [1, 2].  ARP spoofing is a powerful 
technique that circumvents this protection, being often 
used as a first step in more elaborate attacks. Although 
well known in the security practictioners communities [3, 
4, 5], it is still surprisingly absent from the standard 
training and textbooks in networking. This, along with a 
lack of specialized tools to detect it, makes most real life 
attacks go entirely unnoticed. 

Although a few tools and some newer IDSs can detect 
ARP anomalies, most of them do not specifically target 
ARP spoofing – an interesting attack to detect because it 
is highly intentional. Besides, most IDSs rely on sniffer-
based sensors to detect those anomalies, greatly restricting 
their effectiveness in switched networks. 

This paper proposes specific measures to detect ARP 
spoofing attacks in several scenarios: with passive sniffers 
on a hubbed network, by reprogramming the switches to 
catch the telltale signs of the attack and by trying to do the 
same without having to reprogram the switches, inferring 
the anomalies by noticing specific patterns on SNMP 
MIB-II traffic statistics counters. 

The rest of this paper is organized as follows. Section 
2  presents a brief description of ARP and the strategies 
used by common ARP spoofing attack tools. The resulting 
characterization will provide the basis for several 
detection techniques: section 3 describes straightforward 
sniffer-based detection strategies, their applicability and 
limitations; section 4 builds on some principles learned 
from the previous section to devise detection and 
prevention techniques at the switch level; section 5 
describes a detection strategy for switched environments 
based on inferring a possible attack by observing patterns 
on the packet counts that the switches’ SNMP MIB-II [8] 
commonly provide. Section 6 shows how to combine all 
these components into a detection framework that very 
closely resembles traditional IDS architectures, while 
section 7  discusses other entirely different approaches 
being implemented by switch manufacturers. Finally, 

section 8 wraps-up conclusions and future work 
directions. 

2 UNDERSTANDING THE ATTACK 

2.1 ARP: Address Resolution Protocol 

ARP [6, 7] can be seen as an adaptation layer to 
“make IP fit on the MAC layer” or, more precisely, to 
dynamically translate from 32-bit IP addresses to any kind 
of link-layer addresses, such as 48-bit Ethernet addresses 
– assuming, of course, that the link layer provides the 
unreliable datagram service that IP expects. (If the link 
layer is a point to point link, ARP is not used). 

ARP is a very simple protocol, comprised of only two 
messages:  
• Request (“who-has”): specifies the IP address of the 

host whose MAC address we want to find out. It is 
almost always sent as a broadcast frame, so as to 
hopefully reach the host with the desired IP address 
when we don’t know its MAC address. 

• Reply (“is-at”): the answer a host should send, 
specifying the MAC address associated to that IP. It 
is almost always sent as a unicast frame directed to 
the MAC address of the machine that sent the request. 

ARP behavior in most network stacks can be 
succinctly described like this: whenever IP needs to send a 
packet to some host on the local network, a kernel-
resident table called ARP cache is looked up to check 
whether the MAC address corresponding to the 
destination IP address is already known. If it is, IP can 
carry on: a frame is assembled with its destination address 
pointing to the MAC taken from the ARP cache and then 
sent on the wire. Otherwise, a broadcast ARP request 
frame is sent asking the host with the destination IP 
address to inform its MAC address in a unicast ARP reply 
frame. Figure 1 shows this process in greater detail.  
There are other aspects to the ARP protocol, its 
implementation and practical usage that we should be 
aware of: 
• Static ARP mappings: Most implementations 

provide means for the administrator to insert static 
entries in ARP caches. In most stacks, those entries 
may not be overwritten by ARP exchanges from the 



 
 

2

network (there are some exceptions, though). We will 
take advantage of this feature in section 6 to make a 
secure setup for our detection infrastructure. 

• Gratuitous ARP: When an IP interface is brought 
up, the ARP subsystem first tries to detect potential 
IP address duplicates in the local network by issuing 
what’s called a gratuitous ARP: an ARP request 
looking for its own IP address. It tries a few times 
and, if there’s no response within a reasonable 
timeout (3 seconds, typically), it assumes no one is 
using that IP address and brings the interface up. On 
the other hand, if some other machine on the local 
network responds, it reports to the administrator that 
a duplicate IP address has been detected and shuts 
down the interface.  

  On the receivers end, whenever a gratuitous ARP 
request is received, any corresponding ARP cache 
entry must be updated or included.  

• Proxy ARP: some network setups have machines 
legitimatelly responding ARP on behalf of other 
hosts. A common situation is a router that answers 
ARP with its own MAC address for hosts connected 
through another interface. It is rather uncommon to 
have a host answer ARP for another host in the same 
local network, but this is not necessarily illegitimate. 

The key point to observe is the fact that normal ARP 
behavior is always on the form of one or more broadcast 
requests followed by one unicast reply (it is exceedingly 
rare to have more than one reply in legitimate exchanges). 
This will be the foundation of all our detection schemes. 

2.2 ARP Spoofing Attacks 

ARP is defined as stateless – that is, it should not correlate 
requests with replies – and thus prone to accepting replies 
even if it hasn’t issued a request. The ARP spoofing 
attack, detailed in figure 2, is greatly facilitated by this 
fact: the attacker sends a forged ARP reply to one of the 
victim hosts telling the IP address of the other victim is at 
the attacker’s MAC address. This is the so-called cache 
poisoning component of the attack. 
Since the victim’s ARP subsystem has no recollection on 
whether it really asked that or not, it accepts the reply and 
updates its ARP cache accordingly. This causes packets 
destined to the victim’s interlocutor to be diverted to the 
attacker, which can do whatever she wants with it:  
• discard them, resulting in a denial-of-service;  
• relay them to the legitimate destination while storing 

them for later analysis (the combination of a passive 
sniffer and an ARP spoofer is often called an active 
sniffer); 

    
(a) (b) 

 
(c) (d) 

.  .  . 
10.0.1.0/24

.1

.2

.3

.4

.5

.6 

.10 

.11 

.12 

.13

 10.0.1.2 =
00:08:4D:00:7D:C9

ping 10.0.1.10
64 bytes from 10.0.1.10: 
icmp_seq=0 ttl=32 time=0.8ms 
 

7 10.0.1.10 > 10.0.1.2: icmp: echo reply 

 10.0.1.10 = 
01:50:D4:0C:20:4B

8 

.  .  . 
10.0.1.0/24

.1 

.2 

.3 

.4

.5

.6 

.10 

.11

.12

.13

 10.0.1.2 =
00:08:4D:00:7D:C9

ping 10.0.1.10 
 

 

6 10.0.1.2 > 10.0.1.10: icmp: echo request 

 10.0.1.10 = 
01:50:D4:0C:20:4B 

.  .  . 
10.0.1.0/24

.1

.2

.3

.4

.5

.6 

.10 

.11 

.12 

.13

 10.0.1.2 = 
00:08:4D:00:7D:C9

ping 10.0.1.10
 

 

4
arp reply 10.0.1.10 is-at 01:50:D4:0C:20:4B (00:08:4D:00:7D:C9) 

 10.0.1.10 =
01:50:D4:0C:20:4B

5

.  .  . 10.0.1.0/24

.1 

.2 

.3 

.4 

.5 

.6 

.10 

.11

.12

.13

.50 

 10.0.1.2 =
00:08:4D:00:7D:C9

ping 10.0.1.10 
 

 

1 

arp who-has 10.0.1.10 tell 10.0.1.2 (00:08:4D:00:7D:C9) 

2 

3

Figure 1: ARP protocol in action in a local network. In (a1), station 10.0.1.2 tries to ping 10.0.1.10 but, since it doesn’t know which MAC 
address to send the frame to, it (a2) broadcasts an ARP request asking who has it. All machines on the network (assumed to initially be with their 

ARP caches empty) hear but ignore this request, except 10.0.1.10. In (a3), it first records in its ARP cache the IP and MAC addresses of the 
machine which asked. In (b4), it sends a unicast (“private”) reply telling its MAC address back to 10.0.1.2, which stores it in its ARP cache in 

(b5). Now that both machines know their respective MAC addresses, the ICMP echo (the “ping request”) can be sent (c6). When the other station 
replies (d7), the IP layer passes it along to the ping application program, which prints some of its contents (d8). Further traffic will require no 

ARP exchanges until entries expire in either ARP caches. 



 
 

3

• modify them in real time for use with more 
sophisticated attacks, such as TCP hijacking or the 
cryptographic man-in-the-middle attack during initial 
public key exchange.  

In all but the first case above, we call this the relaying 
component of the attack, since most of the time the 
attacker is interested in allowing the communication to 
continue under her control. 
The procedure described so far puts the attacker in the 
position of intercepting only one direction of the 
communication between the victims. In some attack 
scenarios, this may be just enough. If the attacker wishes, 
she can perform a similar poisoning on the other victim, 
making the interception fully bidirectional. 
ARP cache entries are supposed to expire: after some time 
(typically between tens of seconds to a few hours, 
according to the implementation), they are deleted, so that 
new ARP request-replies are generated. This helps to 
reestablish communications when hosts move – that is, 
when their interfaces are reconfigured with the other IP or 
MAC addresses. Moreover, as we mentioned earlier, most 
stacks update their caches when they receive gratuitous 
ARPs precisely to prevent communications interruption 
when a host moves before the other peer’s cache entries 
about it expire. 
These timeouts force spoofers to keep sending fake ARP 
replies periodically. If the victims are credulous, it 
suffices to send spoofed ARP replies every ten seconds or 
so. As long as the spoofer keeps doing this, the victims 
will not issue ARP requests for that IP, since their ARP 

cache entries will always be within the timeout threshold. 
We call this the “quiet” cache poisoning. If the attacker 
can perform what she wants within a single cache 
expiration period, she could send just one or two ARP 
frames. We call this the “ultra-quiet” poisoning. The 
quieter the attacks, the harder they are to detect, primarily 
on switched networks. 
Broadcast-based attacks, although often involving very 
few packets, are classified as extremely noisy, because 
broadcasts can be readily detected by sniffers even on 
switched networks. 
Some ARP cache implementations are very credulous: for 
instance, Windows 95 and 98 update their ARP caches 
even for static entries. Windows NT and above, however, 
don’t accept this, but are easy prey for the standard attack 
outlined above. They also gladly accept broadcast ARP 
replies, making it very easy to spoof dozens of machines 
with a single packet. 
Newer stacks, such as in recent Linux kernels, have made 
ARP stateful and thus a lot more skeptical: it remembers 
which requests it has made and only accepts replies for 
those. This makes the attack harder, but not impossible, 
since we can often force the victim to ask: suppose the 
attacker fabricates a fake ICMP echo request from one 
victim to the other, sending it directly through the 
ethernet driver, bypassing IP – so as to avoid the initial 
ARP request-reply exchange. Along with that, the attacker 
also sends a train of a few fake ARP replies. When the 
victim receives the ICMP echo request, it will try to 
discover the other victim’s MAC address by issuing an 
ARP request that will be almost instantly answered by one 

     
(a) (b) 

  
(c) 

 

.  .  . 

10.0.1.0/24

.1 

.2 

.3 

.4 

.5 

.6

.10 

.11 

.12 

.13

 10.0.1.254 = 
00:08:4D:00:7D:C9 

5 

.254 

00:08:4D:00:7D:C9 
(attacker) 

00:08:4D:00:7D:B6 
(victim host) 

01:D8:9F:00:00:A4 (victim router) 

 10.0.1.13 = 
00:08:4D:00:7D:C9 

.  .  . 

10.0.1.0/24

.1

.2

.3

.4

.5

.6 

.10 

.11 

.12 

.13

 10.0.1.254 = 
00:08:4D:00:7D:C9 

3
arp reply 10.0.1.254 is-at 00:08:4D:00:7D:C9 .254

00:08:4D:00:7D:C9 
(attacker) 

00:08:4D:00:7D:B6 
(victim host) 

01:D8:9F:00:00:A4 (victim router) 

 10.0.1.13 = 
00:08:4D:00:7D:C9

4

.  .  . 

10.0.1.0/24

.1 

.2 

.3 

.4 

.5 

.6 

.10 

.11 

.12 

.13

.50 

 10.0.1.254 = 
00:08:4D:00:7D:C9 

1

2 

arp reply 10.0.1.254 is-at 00:08:4D:00:7D:C9 .254 

00:08:4D:00:7D:C9 
(attacker) 

00:08:4D:00:7D:B6 
(victim host) 

01:D8:9F:00:00:A4 (victim router) 

Figure 2: The ARP spoofing attack. In (a) and (b) we see the ARP 
cache poisoning component of the attack. In (a1), the attacker sends an 
unsolicited ARP is-at message to the host victim. If it has a stateless ARP 
implementation, it will accept the message (a2), updating its cache 
accordingly. This completes the unidirectional man-in-the-middle setup: 
any packets it sends to the router will now be sent to the attacker; but, at 
this point, the router can still send packets directly to the host. In (b3) and 
(b4), the same trick is performed with the router, completing the full 
bidirectional MITM. Some tools do all of the above with a broadcast ARP 
reply, which catches many victims in a single packet, at the expense of 
being easily detected. In (c), we see the relaying component of the attack, 
where the attacker forwards frames between the two victims, either using 
a bridging engine or by classical IP routing. The victims think they’re 
talking directly to each other and the attacker has the chance to intercept 
or modify any part of their conversation. 



 
 

4

of the replies in the train, before the legitimate host may 
have time to answer itself. By the time its answer arrives, 
the victim will no longer accept it. 
Against skeptical victims, the attacker runs into a race 
condition: since they ignore all ARP replies except the 
ones matching previous requests, common approaches are 
either to send the replies as fast as possible, hoping that 
the fake reply arrives before the legitimate one; or 
combine it with the ICMP + train of ARPs technique 
previously described. These attacks are also rather noisy, 
in the sense that the attacker needs to send dozens to 
thousands of packets to succeed. We will see that this 
makes them more easily detectable. 
The relaying strategy also varies for each attack tool, 
which also determines the choice of MAC addresses using 
in the poisoning portion of the attack: 
• Layer-2 bridging: the tool receives frames at the 

ethernet interface (say, by means of the ethertap 
device in Unix-like OSs) and resends it immediately 
changing just the destination MAC address. When 
performing the poisoning, the attacker sends ARP 
replies mapping one of the victim’s IP to a randomly 
invented MAC address so as to prevent interaction 
with its own IP stack. 

• Layer-3 IP routing: if the attacker uses the very 
MAC address currently associated to some of its 
interfaces, it can just let the IP layer forward the 
packets itself – all it has to do is enable IP forwarding 
and disable ICMP redirects in its own IP stack. 

2.3 Traditional Countermeasures 

The primary motivation for performing ARP spoofing is 
because it works even on switched networks. Although it 
is often said that switches make networks immune to 
interception, this is only correct for passive interception 
where a sniffer sits listening traffic without injecting 
anything on the network, but not for an active attack like 
this. There is considerable folklore why this attack 
shouldn’t work and/or would be easily prevented. One 
countermeasure widely recommended is Port Security – 

which is no supported on every switch. Its exact meaning 
and implementation varies from one model to another, but 
it usually boils down to which amount to at least one of 
these features: 
• Limiting the amount of MAC address learned per 

port: We’ve seen some extreme setups in which 
administrators connect only one machine per port and 
set its limit to only one MAC address. This misses the 
point entirely – for sake of argument, imagine that 
each machine in Figure 2 is connected to a port of the 
same switch. It is easy to see that all the ARP replies 
carry no other MAC than each machine’s own, so the 
switch will never need to learn more than one address 
per port. If we have cascading switches or hubs, 
setting the number of learned per port less than the 
expected number of needed MAC addresses – 
something hard to estimate in advance – may impair 
the correct functioning of the network.  

• Static MAC  port mappings: some switches 
feature Access Control Lists that allow the 
administrator to tie specific MAC addresses to 
specific ports. This only stops attack tools which rely 
on faked MAC addresses – as Table 1 shows, some 
tools do that, while others don’t, so it doesn’t prevent 
the attack in general.  

The reason those “countermeasures” don’t work is that 
ARP spoofing is not about faking MAC addresses or 
fooling the switch; it is about faking MAC  IP 
mappings and fooling the hosts – the switches simply go 
along. 
Perhaps some folklore has developed about those 
expedients because some of them do work in specific 
cases and out of confusion with MAC spoofing and/or 
flooding attacks which, although related to ARP spoofing, 
are entirely different issues altogether. These features, 
often referred to as “port security” in the switch 
manufacturer’s user manuals, were primarily designed to 
resist to flooding attacks or broadcast storms. 
Static ARP  IP mappings, on the other hand, are a 
functional countermeasure. However, they are not 

Program/Tool Poisoning 
Relaying 
Strategy 

MAC addr 
generation Remarks 

hunt Unicast L2 Fake Relay engine triggered only once per second, making 
stop-and-wait transfers very slow. Lots of other cool 
features and attack implementations. 

angst Unicast L3 Interface’s own Also has flooding mode 
denver Unicast L2 (?) Fake Implements ICMP + ARP reply train technique to fool 

even skeptical stacks 
ettercap Unicast L3 Interface’s own Lots of other cool features and attack implementations. 
arpspoof  
(dsniff package) 

Broadcast L3 Interface’s own Exceedingly simple. 

Table 1: comparison of strategies used by some ARP spoofing tools we tested. “L2” is short for “Layer-2”, meaning 
that the tool includes a built-in bridging engine. “L3” (short for “Layer-3”) means that the tool relies on the network stack’s 

IP forwarding. 



 
 

5

practical for anything but the smallest networks, since 
they have to be maintained on every host. ARP was 
invented precisely so that we didn’t have to go back to the 
old /etc/ethers days.  

3 DETECTION ON HUBBED NETWORKS 

In shared-medium network segments, where a sniffer 
can listen to all traffic, ARP anomalies are easy to watch. 
An widely used program for this purpose is arpwatch 
[13]. Its main focus, however, is not detecting ARP 
spoofing attacks; instead, it aims to keep sysadmins 
informed (usually via email) about changes in the IP  
MAC mappings. This catches many interesting events, 
such as IP addresses being changed (by authorized 
personnel or not), MAC addresses being changed (either 
by software reconfiguration or by phisically replacing 
ethernet cards), new machines being added to the network 
(because of gratuitous ARPs), common misconfigurations 
(like IP address conflicts), etc. However, arpwatch 
can’t tell these non-malicious events apart from 
intentional ARP spoofing attacks. On large busy networks 
with overworked or lax sysadmins, where typically 
hundreds of ARP anomalies are reported daily, many real 
serious attacks may pass unchecked. 
That was our motivation to implement a specialized 
sniffer to evaluate strategies geared specifically towards 
detecting ARP spoofing attacks. We assembled a test 
network where all machines where interconnected through 
a hub. The two victim machines ran Windows NT (easy 
prey), which had their ARP caches manually cleared 
before each test. The spoofer machine ran Linux 2.4, 
using Hunt 1.4 [10] and angst-0.4b [11] as attack tools to 
perform both cache poisoning and packet relay. On later 
tests, we used a Linux 2.4 victim. Its skepitcal ARP 
proved immune to those tools, although it was easily 
fooled by denver 1.0 [12], which uses the ICMP+ARP 
strategy. 

The resulting detection tool will be used as a building 
block in the final architecture described in section 6. The 
specific algorithms we developed are described in the 
following subsections. 

3.1 The Request-Reply Mismatch Algorithm 

The sniffer listens for ARP packets, keeping a table of 
pending requests keyed by MAC address. Entries are 
removed from the table either when the matching reply 
arrives or after a timeout period (we used two seconds). If 
a reply is seen without a matching request being present in 
the table, we notify the administrator that we’re under 
attack. Basically, this is the same strategy used by the 
skeptic kernels, but applied in our sniffing context, so it’s 
not vulnerable to the ARP+ICMP interaction trick – in 
this mode, our tool ignores everything but ARP frames. 

We made the program flag as attacks some very 
unusual occurences, such as broadcast ARP replies 
(generated by the arpspoof program of the dsniff 
[9] package) and unicast requests. 

In our laboratory, this algorithm performed flawlessly: 
we never had even a single false positive, and it never 
missed any attacks, correctly identifying the MAC and IP 
addresses used by the offender. Further testing is needed, 
however, to see how it performs in unusual environments 
– for instance, some high avaliablity systems based on IP 
takeover work by making a “legitimate ARP spoofing” 
that our algorithm may incorrectly regard as an attack. 
Hopefully, these cases are rare enough to be treated as 
exceptions. 

3.2 The Duplicate Packet Detection Algorithm 

In this algorithm, the sniffer listens for IP packets. We 
hash the entire packet content, modulo the ethernet 
addresses, the IP TTL field and the IP header checksum, 
using the hash as index to a state table marking the time 
we’ve last seen this packet. Entries are removed when 
they’ve been lingering on the table for more than two 
seconds. If we receive a packet whose hash is already on 
the table (assuming we have a decent collision free hash 
algorithm), we alert the administrator that we’re seeing 
the layer-2 or the layer-3 relaying component of the 
attack. 
This algorithm achieves nearly the same detection 
accuracy of the previous one, except that it might detect 
legitimate routers – it didn’t happen in our test networks, 
but it might happen elsewhere. (Having a router 
forwarding packets for the same segment is unusual, but 
sometimes it does happen – for instance, two IP networks 
sharing the same physical medium or a routing 
misconfiguration).  
It may seem surprising that upper-layer (e.g., TCP) 
retransmissions don’t trigger false positives, but it is 
easily explained by the fact that the IP ID is modified, so 
retransmissions do not generate exact packet duplicates.  
The algorithm’s main drawback is that it uses a lot of 
memory – although the hashes are smaller than the 
original the packets, the table grows to a few megabytes 
during periods of intense network traffic. Another minus 
is that it wouldn’t catch DoS-only ARP spoofing attacks. 

3.3 Switch Packet Counters Simulation 

The tool implementing those techniques was called 
Switch Statistics Simulator Agent – SSSA, for short – 
because it originally started life with an entirely different 
purpose: we needed MIB-II’s ifTable-like statistics 
even when there were no switches. Only later we added 
the aforementioned dedicated detection algorithms. 
The switch statistics simulation works as a simple 
“frequency/load count” on the packet’s source and 
destination  MAC addresses: when we receive a packet, 
we allocate a “virtual switch port number” for each MAC 
address we don’t have already. We then count how many 
bytes and packets went from each virtual port to another, 
in the exact same way the embedded SNMP agents on 
dedicated switches calculate them. In fact, all this output 
is made available via the SNMP protocol, so that the 



 
 

6

detection tool we will develop on section 5 can’t even 
distinguish whether it is talking to a real switch or to our 
simulated one.  

4 DETECTION ON SWITCHED NETWORKS 

For efficiency, most LANs are structured 
hierarchically where one or more high speed core 
switches provide connectivity to lower-end (called 
“distribution” and “border”) switches and/or hubs. 
Switches act as “layer 2 routers”, keeping a table 
(sometimes called “MAC address table”, “MAC database” 
or “CAM table”) of which MACs are on which ports so 
that most of the time they only forward unicast frames to 
the specific port the destination host is connected to. 
That’s the reason why many attack tools use unicast ARP 
packets: on switched environments, if our detection tool is 
located on a different port than the attacker or the victims, 
the attack packets will only rarely reach our sniffer, thus 
greatly minimizing the chance of detection. 
We said “only rarely” because sometimes switches do 
send unicast frames to all ports: when their MAC address 
tables don’t contain which port the destination MAC is at, 
they have no choice but to momentarily act as hub, 
sending the packet to all ports. This happens either when 
the switch has just rebooted (and its MAC table is empty)  
or when the entries in the MAC table expire. But they do 
allow a sniffer to get occasional glimpses at the traffic 
from other ports.  
All this makes detecting an ARP spoofing attack by using 
a sniffer possible, though hard. In our test network, 
modified so that all participants were on different switch 
ports, both arpwatch and SSSA managed to detect a 
few attacks – but only when they were very noisy (like 
several ARP replies per second in the poisoning phase) 
and lasted for several minutes. By making the attack as 
quiet as possible, our lab tests showed it was very easy to 
evade detection at all. This confirms what the 
underground communities already knew: the attack is 
quite practical and effective. 

Many commercial switches provide facilities for port 
mirroring: configuring the switch for replicating traffic 
from one or more ports to another port, called the 
mirroring port, where we could connect our sniffers. 
However, since there is usually a substantial performance 
impact when port mirroring is in effect, this strategy 
makes ARP spoofing detection based on sniffing not quite 
viable on switched LANs. 

4.1 Detection on Reprogrammable Switches 

The next logical step would be to implement our 
detection strategies directly in the switch – it is the one 
device that sees all traffic. In principle, our algorithms 
should be easy to implement in commercial switches 
directly in their firmwares. However, only their 
manufacturers have the tools and documentation to 
actually do this. 

We then opted to build a homebrew switch using a 
standard PC with a quad-port ethernet card using the 
bridging features in Linux 2.4’s kernel along with 
ebtables [15], which provide frame-level filtering 
capabilites just like iptables [16] does for IP packets. 
Using ebtables it is trivial to implement the ARP 
Request-Reply Mismatch algorithm. In our lab setup, it 
performed with the same flawless performance. In fact, 
we could do more than just detect the attack: we could 
actually stop it – all we had to do was to tell ebtables to 
drop unmatched ARP reply frames. Protecting against 
denver’s ARP+ICMP trick required further measures to 
correlate ARPs with ICMPs. 

When implemented on a dedicated commercial switch, 
however, this algorithm may suffer from a limitation: 
since memory is scarce in this environment, the state table 
should be limited not to grow too much. In this case, it 
becomes easy to make ARP spoofing undetectable by 
hiding it amidst a flood of fake ARP requests, filling the 
state table up to the point that it can hold no more pending 
ARP exchanges and causing an avalanche of false 
positives – due to the legitimate requests not being able to 
get to the table and their legitimate replies being 
incorrectly flagged as unmatched. 

4.2 The Request-Reply Imbalance Algorithm 

This led us to go in pursuit of an algorithm that used only 
constant-sized tables. We arrived at a solution inspired in 
the MIB-II packet counters available on SNMP-capable 
switches – for each port, the switch maintains four 32-bit 
counters:  
• WhoHasIn: gets incremented every time an ARP 

who-has requests is received at that port; 
• WhoHasOut: likewise, for requests being 

transmitted through that port; 
• IsAtIn: counts ARP is-at replies entering that port 
• IsAtOut: same thing, for replies going out. 
Maintaining those counters can be very efficiently 
implemented in the switch with a couple of comparisons 
on protocol number field and ARP message type.  
The switch makes those counters available over SNMP 
(we create a private arc for that). An external tool then 
polls the counters for all ports at regular intervals (we 
used five or ten seconds), calculating the deltas between 
the current sample and the previous. Finally, for each port 
p, we calculate the ai[p] (“arp imbalance”) variable as 
follows: 
ai[p] = ∆WhoHasOut[p] – ∆IsAtIn[p] 
if ai[p] > 0 then 
    ai[p] = ai[p] - ∆WhoHasIn[p] 

If the ARP imbalance of a given port is greater than zero, 
it means that this port transmitted more requests than 
received replies within the last sampling interval, which is 
perfectly normal. On the other hand, if this quantity is 
negative, it means that the port has received more replies 



 
 

7

than sent requests – the telltale sign of an ARP spoofing 
attack –, so we alert the administrator. 
The additional subtraction on the conditional is to prevent 
the attacker from fooling our detection scheme by simply 
issuing bogus ARP requests to balance the amount of 
replies. If she does that (some tools actually do), the ARP 
imbalance will become even more negative. 
This scheme detected all attacks in our test suite, correctly 
pinpointing the port which the attacker was (this is 
different from SSSA, which reports the attackers’ MAC 
and IP). Even the ultra-quiet, single packet attacks, were 
detected. Figure 3 shows a sample output of the proof-of-
concept detection tool. 
There was just one little glitch: some false positives were 
displayed when, due to the discrete sampling, we were 
unlucky enough to have a legitimate ARP request in one 
sample and its associated ARP reply in the next, making 
the ARP imbalance equal to -1 in the first sample and 
equal to one in the next. We fixed this by “integration”: 
when ai[p]=-1, we wait until the next sample to decide 
if it is an attack or not – we add the current delta 
measurements with the previous (which is equivalent to 
doubling the sampling interval). If the ai[p]<0 
imbalance criterion still holds, we raise the alarm. After 
this correction, no false positives ever happened again. 

5 DETECTION ON LEGACY SWITCHES VIA SNMP 

Since it was not feasible for us to reprogram the 
switches firmwares to implement our detection system, 
the next-best approach was to try to infer the ARP 
imbalance estimates based on packet and data flows 
through switch ports.  

Counters for packets in/out and bytes in/out  flowing 
through each switch port are provided by the SNMP 
management framework in the ubiquitous MIB-II [8]. 

Specifically, there is a table called  ifTable providing 
the following counters:  
• IfInOctets: bytes entering the port 
• IfOutOctets: bytes leaving the port 
• IfInUcastPkts: unicast packets entering the port 
• IfOutUcastPkts: unicast packets leaving the 

port 
• IfInNUcastPkts/IfOutNUcastPkts: the 

same as above, for non-unicast packets. 
These counters grow monotonically until they wrap up 
when they hit the integer representation limit. We are 
actually interested in the amount of data exchanged during 
regular sampling intervals. So we take a snapshot at time 
t(i) and subtract each corresponding variable from its 
previous value at time t(i-1). This is the same collection 
strategy used by MRTG [17] and most SNMP-based 
NMSs (Network Management Systems, such as HP 
OpenView, etc), but much faster – our typical sampling 
rate is 5 or 10 seconds, while most collection tools use 5 
minutes. 
For sake of conciseness, we will represent these values as 
follows (p is the port number; the delta means the 
aforementioned subtraction): 
• io[p] = ∆IfInOctets[p] 
• iu[p] = ∆IfInUCastPkt[p] 
• in[p] = ∆IfInNUCastPkt[p] 
• oo[p] = ∆IfOutOctets[p] 
• ou[p] = ∆IfOutUCastPkt[p] 
• on[p] = ∆IfOutNUCastPkt[p] 
These variables compute traffic for all protocols, not just 
ARP or even IP – so, we will be implicitly assuming our 
network runs no other protocol suites except IP. Our 
proposition is that we can infer a possible ARP imbalance 
simply by looking at these deltas in a particular way. For 
simplicity, the following discussion assumes that we have 

--- Mon Aug  4 19:45:30 2003 ----------------------------------------------------------------------------- 
 if    InOct  InUPkt InNUPkt   OutOct OutUPkt OutNUPk |  WhoI  WhoO IsAtI IsAtO | Label             Status 
  1      256       4       0      256       3       1 |     0     1     0     0 | 00:02:96:01:31:18 
  2       64       1       0       64       0       1 |     0     1     1     0 | 00:e0:98:01:93:74 
  3      256       3       1      384       5       1 |     1     1     0     1 | 00:50:da:b3:09:17 
--- Mon Aug  4 19:45:35 2003 ----------------------------------------------------------------------------- 
 if    InOct  InUPkt InNUPkt   OutOct OutUPkt OutNUPk |  WhoI  WhoO IsAtI IsAtO | Label             Status 
  1      170       2       0      532       6       1 |     0     3     1     2 | 00:02:96:01:31:18 
  2      106       1       0      532       6       1 |     0     3     0     2 | 00:e0:98:01:93:74 
  3     1000      12       1      340       3       1 |     5     1     4     1 | 00:50:da:b3:09:17 [ID] 
--- Mon Aug  4 19:45:40 2003 ----------------------------------------------------------------------------- 
 if    InOct  InUPkt InNUPkt   OutOct OutUPkt OutNUPk |  WhoI  WhoO IsAtI IsAtO | Label             Status 
  1        0       0       0      384       6       0 |     0     3     0     3 | 00:02:96:01:31:18 
  2        0       0       0      256       4       0 |     0     2     0     2 | 00:e0:98:01:93:74 
  3      640      10       0        0       0       0 |     5     0     5     0 | 00:50:da:b3:09:17 [I] 
---------------------------------------------------------------------------------------------------------- 

Figure 3: A few frames of a lab test showing the detection of an ARP spoofing attack using Pavel Krauz’s hunt program. On the switch’s 
interface 1 we have the “server” victim, on 2 the “client” victim and on 3 the attacker. The second to seventh column are the standard MIB-II interface 
traffic counters, shown just for reference. The WhoI, WhoO, IsAtI and IsAtO columns count the number of ARP who-has and is-at packets coming in 
and out of the interface, as described in the text. The label shows the first MAC address seen on each port. The Status column shows which algorithm 
is raising the alarm: “D” for the duplicate packet algorithm, “I” for the ARP Imbalance algorithm and “M” for the Request-Reply Mismatch (which 
was disabled in this particular essay). The first frame shows the situation just before the attack starts. In the second frame, the number of outgoing 

ARP requests is far less than the number of incoming replies, promptly triggering the ARP Imbalance alarm. We also had some duplicate traffic  (we 
were running a TELNET session between the server and the client) that triggered its respective alarm. On the third frame, we didn’t have traffic 

between the victims, so the “D” alarm vanished; but as the poisoning continued, the “I” alarm kept on. The timestamps show that the sampling interval 
was 5 seconds.



 
 

8

at most one host connected to each switch port (that is, we 
have no cascading). We will also assume that little else 
happens in the network but the attack. We will later 
remove both restrictions. 
First, we can get rid of the relaying component of the 
attack by computing the packet imbalance: 

pi[p] = iu[p] – ou[p] 

This is because the attacker resends nearly the same 
amount of packets through the very port it received, so 
they nearly cancel out. They possibly don’t cancel out 
exactly because of the discreeteness of the sampling. 

The packet imbalance is obviously not the same as the 
ARP imbalance we defined in section 4.2. But the 
unsolicited ARP is-at packets the attacker issues during 
the poisoning component of the attack make this number 
positive: from the point of view of the switch, these 
packets are coming in the port; and they don’t get 
cancelled because they are unreplied, as we saw earlier. 
This turns out to be one of the key points of our strategy: 
approximate the ARP imbalance by the imbalance on 
small packets. Recall that ARP packets are small: they are 
only 48 bytes long so they end up being padded, and 
added an FCS. Their final size on the wire is 64 bytes - 
the minimum ethernet length. 

A similar idea allows us to compute an pproximation 
of the average size of packets counted by pi (we call it 
“imbalance residual size” or simply “residue”): 

rs[p] = abs((io[p]–oo[p])/pi[p]) 

Notice that this is not the same as the average packet 
length. Another subtle point is that io[p] and oo[p] 
include the amount of bytes transferred in broadcast 
packets, and we are dividing just by the amount of 
residual unicast packets. We take the absolute value 

because signs will not matter for us later. If pi[p] is 
zero, we forcibly set rs[p] to zero. 

Armed with this intution, we can now present our  first 
detection algorithm (it was actually our third, so we call it 
“C3”; it was just the first to give good results): 
1. Compute imbalances: for each operationally up 

ethernet port, compute pi[p] and rs[p] as 
discussed above; along with: 

  pf[p]=iu[p]+ou[p] 
(This computes the “port flux”, i.e., the total amount 
of unicast packets crossing the port either in and out.) 

2. Determine candidate attacker: Find port n 
simultaneously satisfying: 
a) pi[n] > 1  

(Positive imbalance = issuing unreplied packets) 
b) rs[n] < 65  

(Residual packets are small) 
c) pi[n] is maximum  

(This is the most imbalanced emitter) 
3. Determine candidate victim: find port m such that 

all conditions below are met: 
d) pi[m] < -1  

(Negative imbalance = receiving unreplied 
packets) 

e) pi[m] is minimum  
(This is the most imbalanced receiver) 

4. Verify if there is an attacker-victim coupling: If 
there are such n and m, then n is the attacker port and 
m the victim’s if and only if: 
f) pi[n] >= -pi[m]  

(The imbalance of the attacker should equal to or 
greater than this victim because there may be 
other victims.) 

g) pf[n] > pf[m]  
(The flux in the attacker port has to be 
necessarily bigger than the victim because it is 
both generating traffic and relaying the victim’s 
traffic.) 

We first tested this algorithm in a controlled laboratory 
environment: we built a network consisting of two victims 
(one Windows 2000, acting as “client”, and a FreeBSD 
4.5 acting as “server”), a Linux attacker and the detection 
station (also a Linux), each in different switch ports. We 
performed several test suites: one without an attack going 
on, as a “control group” and for measuring false positives 
(normal traffic incorrectly flagged as an attack); and 
others with the attacks going on, to see how many 
instances the attack would pass undetected in – that is, 
false negatives. In each essay, we tested a few 
applications representative of common traffic patterns: 
TELNET for interactive traffic, TFTP for stop-and-wait 
bulk transfer and FTP for pipe-filling bulk transfer. The 
test was run from an automated script, to ensure 
consistency and repeatability. Before each specific test, 

ESSAY Samples C3 
Tool Appl Total Attack Hits %Hits
angst ftp 21 5 4 80,0%
angst telnet 31 18 13 72,2%
angst tftp 20 5 5 100,0%
hunt ftp 36 24 5 20,8%
hunt telnet 39 27 22 81,5%
hunt tftp 200 188 155 82,4%
denver ftp 21 8 6 75,0%
denver telnet 26 17 7 41,2%
denver tftp 24 7 4 57,1%
none ftp 21 0 0 0,0%
none telnet 35 0 0 0,0%
none tftp 29 0 0 0,0%
TOTALS   503 299 221 73,9%
Table 1: Results from our repeatable laboratory tests. “None” means 
that no attack was in progress – we measured this to see if any false 
positives showed up. “Total samples” means the amount of 5-second 
measurements performed; “Attack” counts in how many of them we 

had an attack in progress, as counted by the SSSA tool, which 
provides perfect detection. “Hits” counts how many samples the 

SNMP-based detection tool detected an attack using the C3 
algorithm. Overall, in this controlled setting it displayed no false 

positives and 74% detection ratio, indicating the viability of using 
packet imbalance as a reasonable estimator for the ARP imbalance. 



 
 

9

the script cleared each victim’s ARP caches. The 
poisoning rate was 1 packet per second. 
Table 1 summarizes the results we obtained for several 
popular attack tools. To allow an objective comparison 
with what would be the ideal detection ratio, we had all 
switch ports mirrored to another port where yet another 
machine was running the sniffer-based SSSA from section 
2.3, running the Request-Reply Mismatch detection 
algorithm. We could detect all the attacks, correctly 
identifying the attacker port; in all instances, we had 
multiple detections in each test. The reported victim port 
sometimes jumped between one victim and the other, as 
expected.  
Although not shown in Table 1, we also tested slower 
poisoning rates: 2, 5 and 10 seconds per spoofed ARP 
packet. As we expected, the detection ratio fell as the 
attacks were quieter. What we didn’t anticipate was that 
we could in many instances still detect the attacks even 
when the poisoning rate was slower than our sampling 
rate. 
The low false positive rate – zero, in this laboratory, but it 
came as high as 5% in our production networks – is 
perhaps the most intuitively puzzling aspect: there seems 
to be no fundamental reason why ordinary traffic only 
rarely triggers our detection criterion. A rigorous analysis 
is beyond the scope of this paper, but we offer a few 
intuitive arguments: 
• Most upper-layer network protocols are bidirectional, 

consisting mostly of request/reply unicast pairs that 
roughly balance themselves. Interactive traffic is a 
good example of this. 

• Many protocols do send unreplied packets, but they 
are almost always broadcast. Exceptions, like some 
ICMP error messages are sporadic.  

• Bulk transfers do generate sizable imbalances – 
especially protocols that try to fill the pipe, like TCP. 
However, this results in large residues – far larger 
than our threshold of 65 bytes. 

In our experiments, minor changes to the algorithm, such 
as omitting step (f) or changing the imbalance thresholds 
from ±1 to zero in (a) and (d), promptly increased the 
false positive rate to unacceptable levels. As the reader 
may have guessed, we arrived at that particular 
formulation by an iterative process of gathering intuition 
from previous experiments, devising a new algorithm, 
trying it on the test network and comparing it against 
other competitors. 

6 GENERALIZED ARCHITECTURE 

Outfitted with the tools described in sections 2.3 and 
5, we can propose a general architecture, represented 
schematically on figure 4: 
• Protected Detection Station and Dedicated 

Network: Our detection machine lies in a protected 
management network, connected to the management 
VLAN (usually VLAN 1) of each switch. The  MAC 

addresses of the switches’ management IPs are 
statically set and it runs an operating system that 
doesn’t allow static ARPs to be overridden (we used 
Linux). Each management port is also statically 
configured to allow only the detection machine’s 
MAC address; and, if the switch supports static ARP, 
we also set the IP  MAC binding of the detection 
station statically. These precautions, although tedious 
to set up and maintain, should be viable because this 
network is much smaller then the main data network; 
and are imperative to prevent an attacker from using 
ARP spoofing – the very attack we want to detect – to 
DoS or confuse our detection system. 

• Detection tool and legacy switch polling: The 
SNMP-based detection tool runs on the master 
detection station, polling the switches for their 
counters through an specific interface connected to 
the protected network. (By “legacy” switches we 
mean standard commercial dedicated switches 
without any of the algorithms we developed). The 
configuration file of the tool specifies which ports on 
the master switch are cascaded on smaller switches, 
so it can construct a large “flat” table pretending that 
all ports from all switches are just like a single switch 
with a huge number of ports. (This eliminates the 
aforementioned restriction about only one machine 
per switch port). The tool uses a notation 
port@swich_ip_address for port names, so as to keep 
track of the original port locations when reporting 
possible attackers.  

  Alarms generated by this tool are “tentative”; they 
will be further screened by the false positive 
elimination scheme described below. 

• Dedicated Port Mirorring Network: Each switch 
has a spare port connected to another network used 
for occasional port mirroring – used both for 
automated false positive mitigation (described below) 
and for packet captures performed manually by the 
administrators for troubleshooting or other purposes.  

• False positive elimination: The port mirroring 
dedicated network is also connected to another port 
on the master detection station, where an instance of 
the SSSA tool listens continuously. Most of the time, 
it hears nothing, since port mirrorings are seldom 
enabled. When the SNMP-based tool detects a 
suspicious event, it reconfigures (with no manual 
intervention or notification) the relevant switch to 
enable port mirroring for that port for some time (we 
used 80 seconds). The dedicated SSSA then receives 
everything in this port and, if it detects an attack, it 
alerts the administrator.  

  On our production networks, our typical raw false 
positive rate per day was less than 0,5% and our peak 
rates were around 5%. This may seem small, but it 
means nearly one false positive per hour, which is far 
too annoying. Filtering those events through SSSA 
for a “second opinion” solved the problem: we never 



 
 

10

heard of the false positives anymore, since SSSA 
provides near-perfect detection. An important detail 
is that we configured this particular SSSA to run the 
duplicate packet matching algorithm – it is too easy 
to miss a careful, silent attack if we pay attention only 
to the poisoning part; and, since it is enabled only 
rarely, its high memory consumption becomes a non-
issue. 

• Sniffers on each hub: Each hub has an extra port 
connected to a dedicated machine running an instance 
of SSSA (nicknamed “sentinels”), allowing it to 
detect any attack performed by any machine 
connected, either directly or indirectly through further 
cascading, to this hub.  Alarms generated by those 
sentinels are “authoritative”, in the sense that they get 
immediately reported to the administrators. The other 
interface of the machine is connected directly to the 
management network, relying on the same precaution 
of having static ARP addresses. 

  Besides sending alarms when they detect attacks, 
those SSSAs are also polled by the main detector via 
SNMP for their MIB-like “switch simulation” traffic 
statistics – this is needed because for the C3 detection 
algorithm to work, it requires not only the victim or 
the attacker’s traffic counters, but both, during the 
imbalance coupling test. As we said earlier, that was, 
in fact, the original motivation for writing the SSSA 
and the reason of its name; its specialized detection 
algorithms were introduced later. 

• Custom switch: we tucked our custom-built Linux-
based switch to the main network, providing 

connectivity for our lab network plus a few other 
machines (our notebooks, etc). It was programmed to 
send an authoritative alert via an SNMP trap to the 
main detection station when the ARP Imbalance 
algorithm flagged an attack. 

Thus, our detection infrastructure, rather 
unsurprisingly, has to mirror the overall network 
architecture. Although it all seems complicated and 
perhaps a lot of work, the infrastructure is similar to what 
serious network management infrastructures usually look 
like. The dedicated packet capture network is also well 
suited to accommodate other IDS and diagnostic tools. 

After assembling this infrastrcuture in our production 
networks, we invited some of our sysadmin colleagues to 
perform test attacks to see what we could accomplish. 
They were intentionally not made aware of the inner 
workings and capabilities of the detection system – we 
only gave them the draft of this paper after the main tests. 
For the record, we all had institutional permission to 
conduct the attacks and conditions were carefully 
controlled so that, although most tests were conducted on 
peak usage hours, our users never noticed anything 
unusual. Our results can be summarized as follows: 
• All attacks which happened to be performed on a 

hubbed segment were promply detected by its SSSA 
“sentinel”, even the most silent and careful ones. This 
was hardly unexpected, given what we discussed in 
section 3.1. 

• Small DoSs went undetected: careful attacks where 
just one or two ARP frames were sent to perform 
only the poisoning part of the attack went undetected 

Border 
Switch 

Management
VLAN 

Other VLANs

Management
VLAN 

uplink 

Distribution 
Switch 

Management 
VLAN 

uplink 

CORE SWITCH 

MGMT NET HUB 

Servers, 
DMZs, etc. 

Border Hub 

Detection Station 
Running SSSA PACKET CAPTURE 

NET  HUB 

SNMP cmds 
go out through 
interface 

MASTER 
DETECTION

STATION

SSSA listens on 
this interface 

uplink 

Figure 4: Example detection architecture with a core switch, two distribution/border switches and a border hub creating three logical networks. 
The main data network is shown with links represented by thick lines. This is where most of the servers, workstations, routers, etc., are., possibily 

organized in several VLANs and/or IP networks. The management network, with its links represented by solid thin lines, conencts the master 
detection station to the management port of all switches and relevant active elements for management tasks, mostly over SNMP. Whenever 

possible, devices in this network are configured with static ARP. On the detection station, our SNMP-based detector collects the traffic counters it 
needs through this network. It is also used to enable port mirroring on a specific switch when the detector suspects an attack is in progress. The 
packet capture network, represented by dotted lines, is used to collect traffic for further inspection by SSSA when the SNMP-based detector has 

enabled port mirroring. When this SSSA sucessfully flags an attack, administrators are notified through standard alarm mechanisms. On each 
hubbed segment, an instance of SSSA “sentinel” also runs to take advantage of the fact that is sees all packets through that part of the network, 

sending an alarm back to the master station through the management network when it sees an attack. 



 
 

11

when they were performed on the legacy switched 
parts of the network. 

• Most attacks which tried to accomplish “something 
useful” from the point of view of an intruder, like 
capturing NetBIOS hashes, hijacking TELNET 
connections or performing the cryptographic SSH or 
SSL man-in-the-middle attack (naturally, using ARP 
spoofing as a first step) were detected even when 
performed on the switched part of the network. Only 
very fast attacks, lasting less than 30 seconds, went 
consistently undetected. 

• All attacks in the part of the network connected via 
our custom-built detector running the ARP imbalance 
algorithm were invariably detected, even the most 
silent ones. Again, this was hardly unexpected. 

Admittedly, this is more of anectodal evidence than a 
rigorous conclusion. Although we did regard those results 
as successful, further fine tuning and field testing is 
certainly needed to declare it as generally viable in most 
network setups. Since at the time this paper was written 
we had this system working for just a few months, we 
didn’t have any real malicious attack incidents to report. 

We did find some rather easy ways to remain 
undetected for reasonably long periods on the legacy 
switched part of the network:  
• Hiding behind volume traffic: by purposefully 

generating large file transfers from the attacker 
station to other machines and adjusting the poisoning 
rate to one packet each twenty seconds or so, we 
could stay below the detection threshold. However, 
we couldn’t manage to stay like this forever – after a 
few dozen minutes, overloads cause some 
mismatched ARP request to get caught by some 
sentinel SSSA and trigger the alarm. 

• Sending artificially large ARP packets:  we 
patched the attack tools to make the ARP packets 
they send unnecessarily large (say, 500 bytes or so). 
All operating systems we tested accepted them 
happily, thus breaking the C3 detection algorithm’s 
main assumption. We had no way to fix this except 
by patching the operating systems not to accept ARP 
packets larger than absolutely needed, which requires 
rebuilding all kernels of all our hosts, and, obviously, 
couldn’t be done for proprietary OSs. 

7 RELATED WORK 

ARP spoofing detection/prevention has not been 
addressed by most switch manufacturers. Recently, Cisco 
started to provide features intended to deal with ARP 
spoofing – even if restricted to some product lines and 
firmware releases. The functionalities offered are: 
• ARP Inspection (AI):  is offered as a mitigating 

measure, given its restrictions on the number of 
MAC/IP mappings monitored, and works along with 
VACLs - VLAN ACLs) wich provide traffic control 
on VLANs. In its deployment, static ARP mappings 

are defined in the switch, and arp traffic is monitored. 
A typical configuration for inspecting two mappings 
looks like [21]: 

 
set security acl ip ACL_VLAN951 permit arp-
inspection host 132.216.251.129 
00-d0-b7-11-13-14 
set security acl ip ACL_VLAN951 deny arp-
inspection host 132.216.251.129 any log 
set security acl ip ACL_VLAN951 permit arp-
inspection host 132.216.251.250 
00-d0-00-ea-43-fc 
set security acl ip ACL_VLAN951 deny arp-
inspection host 132.216.251.250 any log 
set security acl ip ACL_VLAN951 permit arp-
inspection any any 
set security acl ip ACL_VLAN951 permit ip 
any any 

 Whenever some ARP reply is received, it is 
compared with the allowed mappings and accepted if  
it matches some of them.  
Deployment of ARP Inspection is equivalent to 
defining static ARP cache tables in the switch and, as 
the manufacturer readily acknowledges, turns out to 
be administratively prohibitive, being recommended 
only for default gateways and some other key 
devices. 

• Dynamic ARP Inspection (DAI) / DHCP 
Snooping: one of the main drawbacks  in ARP 
Inspection is its use of static ARP mappings. DAI is 
intended to come round this difficulty by dynamically 
keeping track of ARP mappings. DAI intercepts all 
arp traffic in a VLAN, which is then checked [22]. 
ARP packets are validated either againist a trusted 
database which is built at runtime by monitoring 
DHCP activity, or user-configured ACLs - in order to 
handle static IP addresses. Since DHCP is to be 
trusted, some protection is provided by assigning 
which ports may accept DHCP replies [23].  
DAI’s compulsory use of DHCP as the source of 
trusted information on MAC/IP mappings, along with 
the internal MAC/IP mapping database seem to be its 
major limitation. By relying on DHCP, it becomes the 
next obvious target, whereas building and 
maintaining yet another table in the switch is 
certainly does not reduce its processing effort. 

• Private VLANs (PVLANs): seems to have been 
intended for other purposes and then its potential for 
ARP spoofing prevention was later acknowledged. 
The idea is similar to having subVLANs inside a 
VLAN. A VLAN is divided by grouping ports in 
communities, inside wich member ports may 
communicate with each other. If a port is not in a 
community, it can be a promiscuos port, which 
communicates with all other private VLAN ports (it 
is intended to be used to communicate with routers, 
central servers, etc); or an isolated port, which has 
complete Layer 2 separation from other ports within 
the same private VLAN with the exception of the 
promiscuous port. A typical configuration for 
inspecting two mappings looks like [24]:  



 
 

12

 

set vlan 901 pvlan-type isolated  

set vlan 902 pvlan-type community  

set vlan 903 pvlan-type community  

set pvlan 7 901 4/3  

set pvlan 7 902 4/4-6  

set pvlan 7 903  

set pvlan 7 903 4/7-9  

set pvlan mapping 7 901 3/1  

set pvlan mapping 7 902 3/1  

set pvlan mapping 7 903 3/1  

 
PVLANs are presented as another mitigating measure, 
as long the administrator manages to map which hosts 
can communicate with each other in all VLANs. This 
may be difficult, or even of little effect in preventing 
ARP spoofing.  

The features presented although valid as attempts towards 
dealing with ARP spoofing still fall short of a simple, 
easy-to-use and efficient sollution to ARP spoofing 
prevention. The ARP imbalance technique proposed in 
sec 4.2 is certainly much simpler to implement than those 
mitigating measures and can be easily extended to provide 
effective prevention. Under proper implementation, we 
expect it to be easily configured in a switch, either by a 
single command or on a per-port basis. 

8 CONCLUSIONS AND FUTURE WORK 

We presented a review of the ARP spoofing attack 
strategies implemented by real-world attack tools. During 
this process, we tried to clarify some folk misconceptions, 
particularly about some proposed countermeasures that 
only work in special cases and the apparent confusion 
between ARP spoofing and other attacks such as MAC 
flooding, MAC spoofing, etc. 

Armed with this understanding, we set out to develop 
specific algorithms to detect the attack both in hubbed 
networks with sniffer-based tools and in switched 
networks. In this last case, we tried two approaches: one 
was to develop efficient detection algorithms to be 
implemented directly in the switch; and the other was to 
see what we could do without having to reprogram the 
switch. 

By far our best detection strategy was to implement 
the ARP Imbalance algorithm directly in the switch. It’s 
fast, needs a small constant-sized amount memory, detects 
even the quietest attacks and provides no  false positives. 
It should be very easy to implement in most commercial 
managed switches – all it takes is a few comparisons, 4 
counters per port, and a few adjustments in the SNMP 
subsystem to report the results. The alarm system could 
even be done directly in the switch and send an SNMP 
trap to some Network Management System software. 
Perhaps it many situations admins could deploy them 
through a relatively simple firmware upgrade. The only 
drawbacks were that that we couldn’t do it ourselves and 
that it probably can’t be done in low-end unmanaged 

switches. But in the situations where it may apply, we 
urge switch manufacturers to implement it. 

Our second best detection scheme was to implement 
the ARP imbalance and ARP Request-Reply Mismatch 
algorithm in strategically placed sniffers. Its detection 
acurracy was also near-perfect. 

Since it is impractical to continuously capture packets 
directly from the switches using things like port mirroring 
or RMON, we developed an algorithm to infer potential 
attacks from traffic flow statistics provided by SNMP’s 
MIB-II standard counters. We showed how ARP 
imbalance can be approximated by packet imbalance 
under quite general conditions, with reasonable false 
positive/false negative rates. The specific approach we 
developed, however, only catches unsophisticated loud 
intruders with standard attack tools. It will be little time 
until newer tools implement the countermeasures we 
outlined. The question on whether other counter-
countermeasures or entirely different approaches could be 
developed remains open. 

We also tried to provide a brief overview of other 
detection and prevention approaches being implemented 
by commercial switch manufacturers. In a nutshell, they 
tend to be the no much more than age-old strategy of 
security by compartmentalization taken to the extreme – 
with all the administrative hassle involved. For the 
specific problem for ARP spoofing detection, we argue 
our approach is far simpler by comparison. 

Finally, we proposed an architecture combining all 
above detection strategies to make a full-fledged detection 
system for the entire local network quite similar to 
traditional IDS architectures. We discussed how our initial 
experiments indicate that, for attempts at serious network 
compromise that use ARP spoofing as part of the attack, 
the intruder is often forced to make a severe enough 
“noise” as to be detected by our system. 

This article, tools, test suites and follow ups can be 
found in our implementation site: 
http://www.freeicp.org/twiki/bin/view/Arpspoof. 

9 ACKNOWLEDGEMENTS 

We are indebted to Tempest Security Technologies and 
Recife Center for Advanced Systems and Studies for 
allowing us to conduct the “real world” tests in their 
networks. We also would like to thank João Rocha for 
lending his spare switch to perform the repeatable lab tests 
and Kenny Moreira, Finatec and Cisco Academy for 
allowing us to use their labs. 

10 REFERENCES 
1. Andrew S. Tanembaum, Computer Networks, 4th 

Edition, 2002, Prentice-Hall, ISBN 0130661023 
2. James Antonakos, Ethernet Technologies: Part 3 – 

Network Building Blocks, 2002, 
http://www.circuitcellar.com/library/ccofeature/anton
akos0502/c0502ts.pdf 



 
 

13

3. Graham, R., Sniffing (network wiretap, sniffer) FAQ, 
2000, http://www.robertgraham.com/pubs/sniffing-
faq.html  

4. Douglas C. Hewes, Overcoming the Difficulties of 
Packet Capturing on a Switched Network, 2003, 
SANS Institute, 
http://www.giac.org/practical/gsec/Douglas_Hewes_
GSEC.pdf  

5. Volubuev, Y., ARP and ICMP redirection games, 
1997, http://www.insecure.org/sploits/arp.games.html 

6. David C. Plummer, RFC 826: An Ethernet Address 
Resolution Protocol, 
http://www.rfc-editor.org/rfc/rfc826.txt 

7. W. Richard Stevens, TCP/IP Illustrated, Volume 1 – 
The Protocols, 1994, Addison-Wesley, ISBN 0-201-
63346-9 

8. William Stallings, SNMP, SNMPv2, SNMPv3, and 
RMON 1 and 2, 3rd Edition, 1998, Addison-Wesley, 
0201485346 

9. Dug Song, Dsniff package, 
http://naughty.monkey.org/~dugsong/dsniff 

10. Paul Krauz’s, Hunt Project, 
http://lin.fsid.cvut.cz/~kra 

11. Patroklos G. Argyroudis, Angst-0.4b Active Sniffer, 
http://angst.sourceforge.net 

12. Denver Project, 
http://www.ilionsecurity.ch/denver 

13. Arpwatch, 
ftp://ftp.ee.lbl.gov/arpwatch.tar.gz 

14. Ettercap Homepage, http://ettercap.sourceforge.net 
15. Ethernet Bridge Tables, 

http://ebtables.sourceforge.net 
16. Netfilter/IPtables – Packet Filtering Subsystem for 

Linux 2.4, 
http://www.netfilter.org 

17. Tobias Oetiker, MRTG – Multi Router Traffic 
Grapher, http://mrtg.hdl.com/mrtg.html 

18. Snort Open Source Network Intrusion Detection 
System, http://www.snort.org 

19. Raúl Siles, Real World ARP Spoofing, 2003, 
http://www.giac.org/practical/GCIH/Raul_Siles_GCI
H.pdf 

20. Sean Convery, Hacking Layer 2: Fun with Ethernet 
Switches, 2002, 
http://www.blackhat.com/presentations/bh-usa-02/bh-
us-02-convery-switches.pdf 

21. Cisco Systems, Catalyst 6500 Series Software 
Configuration Guide, 7.5 - Configuring Access 
Control 
http://www.cisco.com/univercd/cc/td/doc/product/lan/
cat6000/sw_7_5/confg_gd/acc_list.htm#1108062 

22. Cisco Systems, Catalyst 4500 Series Cisco IOS 
Software Configuration Guide, 12.1(19)EW - 
Configuring Dynamic ARP Inspection 
http://www.cisco.com/en/US/products/hw/switches/p
s4324/products_configuration_guide_chapter09186a0
08019d0ca.html 

23. Cisco Systems, Catalyst 4500 Series Switch Cisco 
IOS Software Configuration Guide, 12.1(12c)EW– 
Understanding and Configuring DHCP Snooping 
http://www.cisco.com/univercd/cc/td/doc/product/lan/
cat4000/12_1_12/config/dhcp.htm 

24. Cisco Systems, Catalyst 6500 Series Software 
Configuration Guide, 7.1 - Configuring Private 
VLANs 
http://www.cisco.com/univercd/cc/td/doc/product/lan/
cat6000/sw_7_1/conf_gd/vlans.htm 

 
 


