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ABSTRACT 
This paper describes the implementation of a multiplatform selective filtering/rewriting HTTP proxy that allows the PKI-related  

operations – such as digital certificate issuance, web form field signing and HTTPS client authentication – to be performed 
entirely outside the browser, even though the browser continues to be used for what it’s good at: rendering web pages. 

Implications such as better usability through improved user interfaces are discussed in light of a prototype implementation.

1 INTRODUCTION 
The SSL/TLS protocols were originally designed to 
provide encrypted and authenticated channels for web 
servers and clients. Even today, they are almost 
exclusively used to authenticate servers, despite its 
support for client authentication. There are many 
reasons for that: in [4], it is shown that getting a client 
certificate – even a free an instantaneous one – is too 
much of a hassle for the average user. Internet 
Explorer (IE), the most popular web browser, makes it 
all too easy to store the certificate without a 
passphrase; besides, its client certificate-based logon 
window is confusing, showing expired and revoked 
certificates along with valid ones and it is outfitted 
with a “remember password” checkbox that causes the 
passphrase to be stored unencrypted, invalidating 
much of the security the process might provide.  
The way failures are handled is also confusing: when 
the server can’t validate the client certificate (either 
because it couldn’t build a trusted certificate chain or 
the client certificate was found to be revoked), it 
simply breaks the connection; there are no provisions 
to redirect the user to a nice page explaining what went 
wrong and how to fix it. 
All these usability problems cause enough user 
rejection that webmasters find it simpler to use weaker 
authentication schemes such as 
name+password+cookies. Although vulnerabilities 
have been discovered (and in some cases fixed) in 
most browser’s crypto implementations, bad human-
computer interface (HCI) is often appointed as a 
serious hinderance to PKI adoption in general [14] and 
client-based authentication in particular [18]. 
There have been a few attempts to improve the user-
friendliness of client authentication, such as VeriSign’s 
Personal Trust Agent [17] and RSADSI’s Keon 
WebPassport [16]. However, as they are both ActiveX 
controls, they are Windows-only solutions and since 
they are activated after the SSL handshake, they have 
to resort to proprietary authentication schemes. 
Another great promise brought by public key 
cryptography is the use of digital signatures as a way 
to detect tampering on digital documents. Some web 
browsers can natively sign the contents of web form 
fields, but many – most notably IE – do not support 

this feature. In IE, it can be implemented using 
ActiveX or even Java (although that requires installing 
CAPICOM, making the process less transparent), but 
they tend to be too cumbersome for large-scale 
deployment. 
This paper investigates an alternative way to provide 
client certificate-based authentication and web form 
signature, along necessary subsidiary services such as 
digital certificate issuance, by performing all the 
cryptographic and user interface chores in a separate 
program: we use a selective cryptographic 
filtering/rewriting HTTP proxy to implement all the 
PKI-related features, leaving to the browser only what 
it’s good at: rendering web pages. This approach has 
the advantage that it works with any browser that 
supports proxies. 
Specifically, we wanted to make a general purpose 
utility for handling digital certificates that provided 
easy-to-use digital signature generation and 
verification functions; and that could be integrated 
with the web browser to allow web form signature and 
client certificate authentication in HTTPS with a much 
better user interface and security features under our 
control. We also wanted this utility to be a testbed for 
new HCI ideas applied to client-side (primarily, but 
not limited to, web-based) PKI applications. 
This paper focuses on the cryptographic, PKI and 
protocol issues needed to “take crypto on our own 
hands” (as opposed to letting the browsers do it), while 
simultaneously striving to maintain backwards 
compatibility. Although we do make extensive use of 
screenshots to illustrate some features and preliminary 
user interface (UI) ideas we implemented – and 
sometimes we even indulge in describing some of its 
details and user feedback we received –, an analysis of 
the merits of our tool’s UI is beyond the scope of this 
paper, for it requires entirely different approaches and 
techniques. What we want here is to show one possible 
way it can be done. 
Besides general familiarity with the 
X.509/PKIX/PKCS standards and PKIs in general, this 
text assumes the reader has considerable familiarity 
with the HTTP [1] and HTTPS [2, 3] protocols. 



  
 

2 OVERALL ARCHITECTURE 
Our tool, code-named Kapanga, is an executable 
program that typically (although not necessarily) runs 
in the same computer as the user’s web browser. A 
schematic depiction of its overall architecture can be 
seen in Figure 1. A  brief description of its major 
components follows: 
• Certificate Store Manager (CSM): provides all 

the underlying cryptographic services needed by 
all the other components. It manages and provides 
access to all the cryptographic objects 
(certificates, certificate revocation lists, private 
keys, signatures, etc) stored in various kinds of 
storage media (the local disk, removable storage 
devices, crypto-capable devices such as smart 
cards, etc); provides access to cryptographic 
algorithms and protocols. The CSM is detailed in 
section 2.1 . 

• Filtering HTTP Proxy Server: receives the 
requests from the browser and feeds them through 
the filter chain. If no filters consume the request, it 
is passed to the HTTP dispatcher nearly 
unchanged. Filters may alter either the request 
before they’re sent to the dispatcher or the replies 
berfore they’re sent back to the browser. These 
changes implement the program’s main features, 
as it will be detailed further along. 

• Engagers: they are in charge of changing the 
HTTP proxy settings of all supported browsers to 

point to our own proxy described above, so that 
we get to intercept all HTTP traffic initiated by 
the browsers. Engagers are described in detail in 
section 2.3 . 

• Default Dispatcher: an embedded HTTP user 
agent that sits at the end of the filter chain. It acts 
like a “default route” in a routing table:  any 
requests that reach it are sent their destinations, 
either directly or via another next-hop proxy. It 
also proxies any authorization requests (e.g., 
Basic, Digest or NTLM authentication) that the 
next-hop proxy may require, so the authentication 
protocol is handled by the browser itself and any 
username+password dialog boxes that may be 
required is also shown by the browser itself. Upon 
receiving the results, it pipes them back to the 
response filters, which also play crucial security 
roles. 

• HTTPS dispatcher and the Encryption 
Domain: similar to the default dispatcher, but 
tunneling the requests over TLS/SSL [2]. For 
performance reasons, it features  support for 
rehandshakes and session caching [3]. It relies 
heavily on CSM services for validating the 
servers’ certificates and providing client 
authentication if the server so requires. A request 
is sent through this dispatcher if the host:port 
of the request is listed in a set called Encryption 
Domain (this detour is actually accomplished by a 
special filterset collectively known as the 
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Figure 1: Overall architecture of the client proxy, which runs in the same computer as the browser. The engager changes the browser’s 
proxy settings so that it uses our own local proxy. Before doing that, though, it detects which HTTP and HTTPS proxies the browser was 
using and configures our dispatchers to use them. This effectively puts us in the middle of the proxy chain. New HTTP requests originated 
by the browser will pass through our proxy, where our filters may act upon them. In fact, we have two filter chains, one for the outgoing 
requests and other for the incoming responses; some of them act upon the headers, other upon the bodies. Some features actually require 
several filters in cooperation to implement. If none of the filters actually consume the request (i.e., take it out of the chain), it reaches the 
default dispatcher in the end of the chain and it is sent as an HTTP request. The Encryption Domain filterset is a special set of filters that 
reroutes the requests that match certain criteria to be sent over as HTTPS. The HTTPS dispatcher makes use of the certificate store 
services (not shown in this picture) to validate the certificates and perform client authentication (with a friendly UI) if the site so requests. 



  
 

“Encryption Domain filters”). As with the default 
dispatcher, it may either send the request directly 
or use the CONNECT method to tunnel it over a 
next-hop proxy [5] if the engager has previously 
told it so. It is also responsible for sending back 
any authentication requests that the next-hop 
proxy may require. 

2.1 Certificate Store Manager 
Underlying the whole program is the Certificate Store 
Manager, providing crypto and PKI services to the 
other subsystems: 
• Certificate, CRL and  private key enumeration 

and caching: all those objects can live in one or 
more physical media. The local hard disk is called 
the primary store location, bringing a minimal set 
of certificates right from the installation 
procedure.  

  The user may configure one or more secondary 
locations. Those are usually removable media, 
such as CD-ROMs, diskettes or USB flash 
memory devices (“pen drives”). Every three 
seconds or so the certificate store manager checks 
to see if these devices are readable and, if so, 
rescans them. This way, a user may have and use 
his/her certificates/keys in a removable storage 
medium during their entire lifetime1. 

  Crypto devices such as smartcards are also 
supported, although they are handled as special 
cases because some objects (private keys, 
primarily) may not be exported and we may only 
operate on them via the device’s built-in 
cryptographic capabilities.  

  The resulting in-memory cache can be seen as a 
concatenation of all the contents of all of the 
devices. CRLs are handled as a special case – 
since some of them tend to get very big, they are 
deallocated from memory as soon as the CSM is 
done using them in the trust calculations. 

  Private keys are handled as special cases as well. 
When stored in crypto devices, the CSM directs 
all its crypto primitives to the device’s drivers to 
make use of its embedded functionality; 
otherwise, they are loaded only when needed and 
the crypto primitives (signing/decryption) are 
directed to the software-based implementation.  

  Our certificate store has another type of object 
called attestation signature or simply attestation. 
It is a signature block on someone else’s 

                                                           
1 Some of our users like to call this “the poor man’s smartcard”. We 
try to tell them this is a particularly nasty misnomer – not only 
because certain media such as USB “pen drives” are actually more 
expensive than smartcards (even including the cost of the reader), 
but also because they lack the tamper-proofness and crypto 
capabilities of the latter. 

certificate made by the private key of a user to 
indicate that it trusts that certificate (typically a 
root CA). This signature is detached – that is, it is 
stored in a separate file in a file  format of our 
own devising; we will have more to say about 
attestations in section 2.1.1. . 

• Chaining: after the certificates are loaded from 
the physical stores, the CSM tries to chain them. 
First, duplicates are discarded and certificates 
issued by the same CA are sorted by their 
notBefore fields and assembled as a doubly-
linked list. The best current certificate is selected 
by applying two criteria: a) it is the one with the 
most recent notBefore and b) it must be still 
within validity (that is, with the current date/time 
before its notAfter field). If no certificate 
satisfies both requirements, we settle for the one 
that satisfies only (a). 

  After that we build several indices for fast lookup: 
one keyed by the certificate’s SHA1 hash, other 
by its Subject Key Identifier extension [7] and 
another by subject DN. This last one has a 
peculiarity: only the best current certificates make 
to this index; the future and previous editions 
don’t get there. 

  We then chain the certificates in the usual way, 
using the recently computed indexes to speed up 
finding the issuer of each certificate in the store 
(matching SKI/AKI pairs, when available, and by 
subject/issuer DNs as a last resort). We set the 
parent pointer of each certificate to the issuer and 
record its the depth in the tree (the whole chaining 
algorithm uses a breadth-first search precisely to 
make that trivial). 

  CRLs are considered as an appendage to their 
issuer certificates and are chained to them. Private 
keys are also appendages and are linked to the 
certificates with the corresponding public key (the 
private key format stores the public key as well, so 
this comparison is straightforward). 

• Trust Status Calculations: With all the 
certificates and associated objects properly 
chained, we start to verify their validitity periods, 
signatures of its issuers, attestations, etc. It is 
interesting to notice that all trust calculations are 
relative to the currently selected default ID, since 
attestations depend on it. Thus, whenever the user 
changes the default ID via the GUI, the whole 
trust statuses are recomputed. Section 2.1.2.  
describes each trust status in detail. 

The CSM has a few other utilities and services: 
• Public CSM Server: We coded a version of the 

CSM in a web server that is offered as an 
associated on-line service to the user and acts a 
public certificate/CRL repository. Over the years, 



  
 

we’ve been dumping on this server every CA 
certificate we lay our hands on. Whenever a 
certificate is unchained, the Kapanga may query 
the CSM server (either automatically due a 
configuration option or manually through a pop-
up menu in the GUI) to see if it knows the missing 
issuer. The external CSM may also return CRLs – 
it has a built in robot that tries to fetch CRLs of all 
CAs it knows about from its distribution points. 

• Automatic CRL Download: Just like the public 
online CSM server, the program’s internal CSM 
has a similar feature – it automatically tries to 
download the latest CRLs from the addresses 
advertised in each CA certificate’s 
cRLDistributionPoints extension. It can 
do so upon user request or automatically in the 
background. In the automatic mode, the list of 
candidates URLs is rebuilt each four hours 
(configurable) and we try to downloads CRLs 
from them. In case of success, the whole trust 
settings are recomputed and redisplayed. If some 
download fails, the next attempt time is subject to 
an exponential backoff algorithm with a maximum 
period of one week. 

The overall effect we tried to achive is that the user 
doesn’t have to worry about the intricacies of 
certificate management at all: he/she would only use 
the program features, collecting certificates along the 
way, and the CSM will do its best to ascertain its trust 
statuses and keep everything updated – without 

removing from the user the possibility of doing things 
manually if he/she so wishes. 

2.1.1. Attestations 
Attestations are signatures of a private key in someone 
else’s certificates as a means of informing Kapanga 
that the owner of that private key trusts the signed 
certificate. They are akin to PGP’s key signatures or 
introductions, except that they are stored in a file 
separate from the certificate itself. 
We originally implemented attestations only for Root 
CAs as a more secure means to tell the CSM that 
particular CA is to be considered trusted. We were 
trying to avoid a simple vulnerability most browsers 
have: it’s quite easy write a malicious executable that 
inserts a new fake root CA in their trusted certstore – 
in IE’s case, it can be done in a few lines of code, since 
the root CAs are stored in the registry; for Mozilla-
derived browser’s, it requires only slightly more effort, 
since the root CAs are in a Berkeley-DB file.  
As we will see in the next section, Kapanga trusts root 
CAs only if they’re signed by the user’s key. We say 
that the only truly trusted certificate is the user’s own, 
because he/she has the corresponding private key. All 
the trust placed in the other certificates, even root 
certificates, stems from the user. Hopefully it also 
makes the root insertion attack slightly harder, for it 
will require the attacker to induce the user to sign the 
corresponding certificates. 

 

 

 

 

 

Figure 2: The CSM trust calculation results as displayed in the GUI. Here we have a certificate store with (1) three unattested roots and (2) 
three attested, trusted roots. There is also an Intermediate CA (3) that cannot be trusted because it’s unchained, meaning that we lack its issuer 
root. All children of trustred roots are marked as indirectly trusted unless they’ve been revoked (4), their signatures don’t match (6), or it’s not 
within its validity period (7). The item marked in (5) is the current ID (aking to PGP’s “default key”). All trust calculations are relative to the 
attestations (detached signatures on root CAs) this ID has previously performed.



  
 

While this does improve security, this may seem as an 
extra complication: we require the user to have a 
certificate and private key; Kapanga is nearly useless if 
the user doesn’t, since it will trust no one. After getting 
a certificate, the user would need to perform a few 
attestations. We tried to make this simple by 
integrating the attestation process with the certificate 
issuance/import processes: as shown in Figure 4, when 
the user gets a new certificate, a few checkboxes cause 
its root to be automatically attested, as well as all other 
roots this root trusts: root attestations on other roots are 
our bridge-CA mechanism. 
Later on, we generalized the attestation system: the 
user now can sign any certificate he/she chooses. 
This effectively makes Kapanga’s trust system a cross-
breed between the X.509’s strictly hierarchical and 
PGP’s web-of-trust models. While we were inspired 
by and tried to follow RFC 3280’s certificate 
validation rules, we can’t really say we follow them to 
the letter because it ended up evolving in a different 
direction. 
Other interesting analogies can be drawn with other 
public-key based systems: for instance, signing an  
unchained server certificate in Kapanga is akin to 
adding a SSH server key to the 
~/.ssh/known_hosts file, except it’s harder to 
spoof because of the signature. 

2.1.2. Trust Statuses 
The trust calculations assign one of the following 
statues for each certificate: 
• Ultimately Trusted: this means that we have the 

private key corresponding to this certificate. Thus, 
it is an identity we can assume. Those certificates 
are considered to be “the root above the Roots”, 
the true starting point all trust stems from. As a 
result, such certificates are considered trusted 
even if they’re not properly chained or if its chain 
doesn’t go all the way up to a trusted root; we say 

this status overrides the “Unchained” and “No 
path to trusted root” statuses described below. 

• Directly Trusted: this means that this certificate 
has been attested by the current user. In other 
words, there is a signature block on this certificate 
correctly verified against the current user’s public 
key as proof that the user gave his/her direct 
consent that this certificate must be considered 
trusted. If this a CA certificate, this causes all 
child certificates to be considered indirectly 
trusted. 

• Indirectly trusted: this means that the CSM has 
verified that the signature of the issuer is valid and 
that the issuer is trusted (either directly or 
indirectly). 

• Not Within Validity: the certificate is not trusted 
because the current date and time is after the value 
specified in the certificate’s notAfter field or 
before the value specified in the notBefore 
field. This status overrides all others (even the 
Ultimately Trusted stauts): the CSM doesn’t even 
bother checking anything else. 

• Unchained: the certificate cannot be considered 
as trusted because it we don’t have its issuer. This 
status applies only to intermediate CAs and end-
entities; it obviously can’t happen in Root CAs. 
This status can override all the previous ones 
except the “Ultimately Trusted”. 

• Not Attested: this only happens to Root CAs. The 
certificate cannot be considered as trusted because 
we either have no valid attestation signature on 
this root from the current user’s. 

• No path to trusted root: the certificate cannot be 
considered as trusted either because the root of the 
chain has not been attested (it is not directly 
trusted) or some of its issuers are unchained (the 
chain doesn’t go all the way up to a root CA). 

Figure 3: Manual Attestation Process. The user 
must sign the Root CA’s certificate with his/her 
private key. Only then this CA will be considered 
directly trusted. The UI was designed as a single-
step dialog box presenting the most important 
certificate identifiers for manual checking against 
other trusted sources, instead of the unecessarily 
complex and sometimes scary multi-step wizards 
most browsers have. The text succintly explains 
that this must be an informed decision. In this 
screenshot, we see the program requesting the 
private key’s passphrase, which reinforces the 
sense of importance of this action. An always-
enabled but impossible to disable check box 
reminds the user that passphrases are case-
sensitive. Root CA attestations are also integrated 
with the certificate issuance/import dialogs, so 
users rarely come to this dialog to perform root 
attestations; it is more often used to attest 
certificates other than roots. 



  
 

• Revoked: the certificate is not trusted because its 
serial number is listed in its CA’s Certificate 
Revocation List (CRL) and the CRL itself is valid. 

The trust statuses for CRLs work a bit differently. A 
CRL is considered valid if the signature of its CA 
matches just fine, regardless of whether it is outdated 
or not. If a given certificate is listed in some CRL, it is 
flagged as revoked even if the CRL is not the freshest 
possible; the CRL checking engine tries to do the best 
with what it has. It is the responsibility of the 
automatic CRL dowload feature to try to keep CRLs as 
up-to-date as possible. 
When the CRL checking engine is asked about 
whether a certificate is revoked or not, it returns an 
answer consisting of three items:  
• Is_revoked: a tristate flag saying whether the 

certificate is revoked (true), or not (false) or if we 
can’t ascertain because we have no CRL for this 
CA (unknown). If this flag is unknown, the 
remaining two items describe below are 
undefined. 

• Is_outdated: it says whether the CRL used to 
compute the is_revoked status is outdated or not. 

• Reference date: if is_revoked is true, it returns 
the revocation time and date as taken from the 
CRL. Otherwise, it returns the CRL’s 
lastUpdate field, meaning that we can be 
certain that this certificate isn’t revoked only up to 
the moment the CRL was issued. 

2.1.3. Certificate Issuance, Import and Export 
Another important service provided by the CSM is 
providing support for having new certificates issued 
through a Certificate Authority. From the point of view 
of the CSM itself, its just a matter of having an RSA 
keypair generated and converting it to an Netscape 
SPKAC (Signed Public Key and Challenge, see [12]) 
format (a Certificate Signing Request would seem a 
better choice, but the reason for that will become clear 
further along).  
From the point of view of the user interface, there are 
two very different implementations: 
• The classic web-based style, in which the user 

directs his/her browser to the CA web page, fills 
some web forms and the browser activates the key 
generation procedure. Since this issuance system 
is intrisically intertwined with the filter system, it 
will be described along with our discussion of the 
HTTP filters in section 2.2 . 

• We also wanted to have a PGP-like wizard-based 
instantaneous key generation. To that end, we 
implemented a specialized wizard that uses 
FreeICP.ORG’s Entry-Level CA [4] to allow the 
user to get a free, instantaneous short-lived 

certificate. The rest of this subsection describes 
some particularities of this process. 

In the first step, the user enters his name and email 
address, being also warned that the process requires 
being online or else the process will fail – this is unlike 
PGP. The user is also asked to reconfigure his/her 
spam filters to prevent the CA notification messages 
from being blocked. 
After that, the wizard asks the CA whether the email 
address the user requested is already taken – that is, 
whether the CA has in its database a valid certificate 
issued for that email address. This is implemented by 
sending the CA a request for a “Revocation 
Reminder”. If the server responds with a “No valid 
certificate associated with this email address” message, 
we let the user proceed. Otherwise we inform that the 
user is going to receive an email with revocation 
instructions and ask him/her to follow it before coming 
back to try to issue the certificate again. In this 
situation, the “Next” button of the wizard is grayed 
out, making impossible to proceed. 
The next step is setting up the passphrase – historically 
the step users hate the most. This is constitutes a good 
opportunity to describe what kind of usability ideas 
we’ve been experimenting with, so we will detour 
from the “protocol nuts and bolts” approach we’ve 
been adopting so far and make an aside about our UI 
designs. 
The philosophy is to try to steer the user to do the right 
thing, both through education and trying to prevent 
unwittingly dangerous actions. However, it can’t be 
frustrating either, so the restrictions must not be 
absolute; they have to be bypassable, although the user 
must feel frowned upon when choosing the insecure 
path. 
As usual, we have two passphrase text entry boxes. By 
defaut, they are set not to show the text being typed, 
replacing the characters by asterisks. Just like in PGP, 
however this is bypassable by unchecking a “Hide 
Typing” checkbox. This is needed because some poor 
typist users take too many attempts to make the 
content of the text boxes match that they become 
frustrated and quit. But unlike in PGP, if they opt to do 
this, they get a insistent blinking message warning 
them to make sure they aren’t being watched or 
filmed. 
We also implemented a warning about Caps Lock 
being enabled, now common in many programs.  
Also common is the passphrase quality meter. The 
metering algorithm tries to estimate the entropy in the 
password roughly by making a weighted average of 
two criteria: the word entropy and the character 
entropy. The former is exceedingly simple-minded: we 
assume that each word adds about 11 bits of entropy. 
The latter is more complicated: we determine the 
bounding set of the characters of the passphrase in the 



  
 

ASCII code space and use it as an entropy per 
character estimator. Then we multiply it by the number 
of characters and divide it by the efficiency of a 
customized run-length encoder. This has the effect of 
yielding very low scores to regular sequences such as 
“aaaa” and “12345”. The quality meter displays its 
score in a progress bar and with a scale categorizing 
them as “simple”, “good” and “complex”. 
The reason we didn’t bother to be much more 
scientific than that with the quality meter is that in our 
early attempts it became clear it would result in it 
being overly frustrating to the end users. Our priority 
is to keep the users happy (or at least not too unhappy), 
so we calibrated (or rather downgraded) the algorithm 
many times to quell their complaints. We did perform 
some research about it, but in the limited time we had 
we could find no real good papers with general design 
guidelines for passphrase quality meters. We opted for 
trial and error based on the users’ feedback. 
In the end, we struck a middle ground with the 
following strategy: we made the meter slightly 
challenging and by default it doesn’t allow you to go 
on if the score doesn’t lie in the “good” range. 
However, we added a checkbox that allows you to 
disable the meter restriction altogether – in which case 
the user gets a polite message telling something like 
“now you’re on your own risk, hope you know what 
you’re doing – don’t say I didn’t warn you”. 
A frequent question our users pose is “what’s a good 
passphrase anyway?” To try to answer that we 
implemented the passphrase suggestion dialog shown 
in Figure 4d. It generates passphrases suggestions 
using the Diceware method [18], which consists of 
generating a random number and mapping them onto a 
dictionary of 7776 words and common abbreviations, 
yielding 12.92 bits of entropy per word. (The method 
was originally designed to be performed by hand, 
pencil and paper using five dice tosses to select each 
word.) With 5 words we get more than 64 bits of 
entropy, which provides good enough protection 
against brute force attacks under quite general 
conditions while remaning reasonably easy to 
memorize. 
Our user’s feedback to the passphrase suggestion box 
has been a mixed bag. Some love it and many hate it – 
the primary complaint is that passphrases are way 
long. Many system administrators have been asking us 
to add a passphrase suggestion algorithm that matches 
their password policies like “8 characters with at least 
one punctuation character and a number not in the end 
nor the beginning”. No amount of arguing that the 

diceware passphrases are more secure than those 
approaches seems to convince them. On the good side, 
however, our rejection rate has been zero precisely 
because we give the users the choice: they can simply 
disable the quality meter and ignore the suggestion box 
altogether if they really want to. Over time, we see that 
users gradually start to explore the passphrase 
suggestion box and the number of good passphrases 
slowly increases. A quantitative characterization of 
those intuitive perceptions may make fertile ground for 
a future paper. 
The last page of the wizard is the one where the key 
pair is generated. As many other implementations do, a 
progress bar tracks the possibly lengthy key generation 
process; we were working on an educational animation 
to add to this window, but a discussion of its features 
is beyond of the scope of this paper. 
After the key pair is generated, the private key is 
encrypted with the passphrase and saved in the 
Certificate Store. The public key is converted to the 
SPKAC format. When the wizard is invoked from the 
Keygen Interceptor filter (see section 2.2.2. ), we 
return this SPKAC to the filter. We also store along 
with the private key the state of the attestation 
checkboxes in the final page of the wizard (the CSM 
has facilities to add property=value tags along 
with any object) – they will be needed later when it’s 
time to pick up the issued certificate and insert it in the 
CSM. 
If, on the other hand, wizard has been invoked from 
the main menu, the SKPAC is sent in a HTTPS 
message to the FreeICP.ORG Entry-Level CA (the 
destination URL is configurable but with a hardcoded 
default). The Entry-Level CA responds immediately 
with the certificate in a PKCS#7 bag right in the HTTP 
response body. 

2.2 Filters 
Filters are routines that change the request header, the 
request body, the response header or the response body 
of the HTTP requests received by our internal HTTP 
server. In our implementation, each filter can change 
only one of these items; the cooperation of several 
filters is often needed to implement a single particular 
feature. The filters are organized in two filter chains: 
the request chain and the response chain. Within a 
chain, the filters are executed sequentially in the order 
they’ve been set up. Some filters depend on others, so 
the chain setup tries to ensure that they are 
topologically sorted. 



  
 

Notice that request filters can consume the HTTP 
request entirely, removing it from the chain so that it 
won’t reach neither the subsequent filters nor the 

default dispatcher at the end of the chain. It then 
becomes this filter’s responsibility to either issue the 

 
 (a) (b) 

  
 (c) (d) 

 
 (e) (f) 
Figure 4: Wizard-style UI for using the FreeICP.ORG instantaneous Entry-Level certificate issuance process. In (a) the user enters his/her name 
and email address, while being advised the need to be online and that notifications will be sent over email. In (b) the CA is queried to see whether 
that email address is already in use. If so, the CA will send an email with revocation instructions and the process is halted. In (c) the user sets up a 
passphrase for the private key that is about to be generated. A quality meter gives prevents the user from choosing too weak a passphrase – unless 
the “Enforce quality restrictions” checkbox is disabled. The status texts indicate in real time when the confirmation matches and some educational 
security tips are also offered. In (d) we see the passphrase suggestions dialog: ten suggestions are put forth so that the user can choose visually 
without revealing the passphrase to shoulder surfers. As the first character is typed, all fields turn to asterisks. Each time the user correctly retypes 
the passphrase causes the chosen box to blink. Typing a different one resets the counter. Cheating by using copy-and-paste works but the user is 
politely warned that this doesn’t help memorization. In (e), the key pair has been generated, converted to SPKAC, sent to the CA and the signed 
certificate has been received back. In (f) we see the new certificate and its associated private key in the certstore main window, already set as the 
default ID. The “Mark the Root CA as Trusted” checkbox caused the attestation of root certificate, so it’s shown as directly trusted; the “Mark all 
cross-certified Root CAs as Trusted” checkbox caused an attestation on VeriSign’s Root CA as well. The whole process takes 20 seconds or so for 
experienced users and less than two minutes for novices – most of it spent figuring out how to either please or bypass the quality meter. The user 
gets out of the process with all attestations already performed, so he/she will rarely have to perform manual attestations. 



  
 

request and insert the response back in the chain or to 
abort the request entirely. 
Filters can be divided in two main groups described in 
the following subsections. 

2.2.1. Infrastructure Filters 
Infrastructure filters aren’t directly involved in 
implementing the security features; they primarily 
provide services for the other filters. A description of 
the most important filters in this category follows, 
roughly in order from the simplest to the most 
complex: 
• Command Parser: this is a simple request header 

filter that detects and extracts a special query 
string on the form “x-kapanga-
cmd=[command]” from the URL. Below we 
have a short summary of the commands; each will 
be discussed in detail further along: 

  http://example.com/?x-kapanga-
cmd=addsite(port,title,errpath) 
Adds the current site (example.com:80) to the 
encryption domain. TLS/SSL connections will be 
sent to the TCP port specified in “port”. If the 
certificate validation fails, the request is redirected 
to “errpath”. The parameter “title” is a user-
friendly added to the bookmark/favorites lists. 

  http://test.com:8080/?x-kapanga-
cmd=delsite 
Removes the current site (test.com:8080) from the 
encryption domain. 

  http://yasite.com/?x-kapanga-
cmd=sign(data,sig) 
Prepares to sign the field named “data” in an web 
form that will be downloaded as a result of this 
request. The signature will be performed when the 
user hits the submit button in his/her web browser 
and the result will be placed in a (possible new) 
form field named “sig” as a S/MIME signature. 

  http://somewhere.net/?x-kapanga-
cmd=send-usable-ids 
Forces the request to become a POST and sends a 
list of valid ultimately trusted certificates (without 
their respective private keys, of course). 

  http://whatever.org.ar/?x-
kapanga-cmd=activate(sha1) 
Sets the ultimately trusted certificate with 
fingerprint SHA1 as the default for client 
authentication with the server specified in the 
URL (in the example, “whatever.org.ar:80”) 

  http://dummy.net/?x-kapanga-
cmd=ua(string) 
This command interacts with two filters. First, it 
tells the Version Tag filter to change the User-
Agent header to string, effectively lying about the 

browser’s identity and version. This will be 
needed to redirect us to the Nestcape-style 
certificate issuance system in commercial web-
based CAs. Second, it arms the Keygen 
interceptor filter. 

• Version Tag: A simple request header filter that 
appends an identifier and our version numer to the 
User-Agent header, without removing the 
browser’s identification. This allows the web 
server to detect whether our tool is enabled and 
perhaps offer customized functionality. For 
instance, a client authentication-capable website 
could detect that Kapanga is engaged to the 
browser and offer its login URL already including 
the x-kapanga-cmd=addsite command. 

  This filter is also responsible for “lying” about the 
browser’s identity when the command parser has 
previously received the x-kapanga-
cmd=ua(string) command. It changes all 
User-Agent request headers to the specified string 
(typlically something like “Mozilla/5.0”). It also 
replaces all occurences of 
navigator.appVersion in JavaScripts by 
the specified string, since most web-based 
commercial CA software uses embedded scripts to 
determine the browser’s version. 

• Encoding Dampers: quells any encoding 
negotiation we can’t understand, such as gzip or 
deflate encodings. In our current implementation, 
we don’t support any encodings, so this is a 
simple filter that sets the the Accept-
Encoding field of the HTTP request headers for 
the identity transformation. This is needed 
because several filters down the chain will need to 
parse the HTML when it comes back. This, of 
course, hinders any performance gains that those 
encodings might bring. Future implementations 
will replace the damper by a proper set of 
decoders. 

• Chunked Transfer Encoder: converts the HTTP 
response bodies to the chunked transfer encoded 
form (see [1], section 3.6). This is needed because 
the response body filters will very likely change 
the length of the body, so the browser must not 
employ the ordinary strategy of relying on the 
Content-Length header. All that, in turn, is a 
consequence of the fact that the body filters 
perform on-the-fly rewriting, that is, they act upon 
each data block read from the network. The 
alternative would be to buffer the whole body, 
compute its new length after all filters had been 
applied and then send it along to the browser – a 
bad idea because response bodies can grow 
arbitrarily large, often several megabytes long, 
which would make latency too high and memory 
consumption prohibitive. The Chunked Transfer 



  
 

Encoding scheme was invented precisely for this 
kind of situation when we don’t know beforehand 
the size of the HTTP object we’re transmitting. 

An example may clarify what those filters accomplish. 
Suppose our browser issues the following HTTP 
request (indented for better readability): 
GET http://testserver.example.com/t1.html?x-
kapanga-cmd=delsite HTTP/1.1 
Accept: image/gif, image/x-xbitmap,  
        image/jpeg, image/pjpeg, 
        application/vnd.ms-excel, 
        application/vnd.ms-powerpoint, 
        application/msword,  
        application/x-shockwave-flash, */* 
Accept-Language: pt-br 
User-Agent: Mozilla/4.0 (compatible; MSIE  
            6.0; Windows NT 5.1) 
Host: testserver.example.com 
Connection: Keep-Alive 

The full URL on the GET request gives away the fact 
that our browser was configured to use a proxy. This 
request also includes a Kapanga-specific command. 
After passing through the infrastructure filters, it 
would be sent over the network like this: 
GET /t1.html HTTP/1.1 
accept: image/gif, image/x-xbitmap, 
        image/jpeg, image/pjpeg, 
        application/vnd.ms-excel, 
        application/vnd.ms-powerpoint, 
        application/msword, 
        application/x-shockwave-flash, */* 
accept-language: pt-br 
accept-encoding: identity;q=1, *;q=0 
connection: keep-alive 
host: testserver.example.com 
proxy-connection: Keep-Alive 
user-agent: Mozilla/4.0 (compatible; MSIE  
            6.0; Windows NT 5.1) + Kapanga  
            0.22 

Since in this example Kapanga was not configured to 
relay the request to another proxy (that is, IE was not 
using a proxy before the engager did its job), the URL 
in the GET line is relative. Also notice that the 
command parser removed the “x-kapanga-cmd”. 
The encoding damper has also left its mark in the 
Accept-Encoding line telling that only the identity 
encoding is acceptable and all others are not. We can 
also see that the version tag filter added our name and 
version number to the User-Agent line. 
After the request is issued over the network, the server 
responds with something like this: 
HTTP/1.0 200 OK 
Content-Type: text/html 
Content-Length: 132 
 

<HMTL> 
 <HEAD> 
  <TITLE> 
   Infrastructure filters demo 
  </TITLE> 
 </HEAD> 
 <BODY> 
  <H1>Test!</H1> 
  All's well. 

 </BODY> 
</HTML> 

The chunked encoder converts this to: 
HTTP/1.1 200 OK 
content-type: text/html 
transfer-encoding: chunked 
 

40 
<HMTL> 
 <HEAD> 
  <TITLE> 
   Infrastructure filters demo 
  </TIT 
40 
LE> 
 </HEAD> 
 <BODY> 
  <H1>Test!</H1> 
  All's well. 
 </BODY> 
</ 
5 
HTML> 
 
0 

In this example, we lowered the maximum chunk size 
to 64 bytes to accentuate the encoding result; in our 
actual implementation, the maximum chunk size is 
32Kb and it almost never gets that big because the 
networking layer sends it to us in even smaller chunks 
due to the underlying TCP buffers. 
The chunk encoder filter has some heuristics to detect 
old browsers (such as IE3) that don’t support the 
chunked transfer encoding. In those cases, it refrains 
from altering the body but it also quells the HTTP 
keepalive feature, so that the browser will rely on the 
connection termination to know when the body data 
finishes. 

2.2.2. Feature Filters 
These are the filters that actually implement the 
security-relevant features, relying in the infrastructure 
provided by the previous filters and the CSM: 
• Web Form Signer: this is a request body filter 

that acts only on POST requests with the 
“application/x-www-form-urlencoded” MIME 
type. It is activated when the command parser 
previously received a command of the form 
sign(in,out,flags). The argument “in” is 
the name of a form field in the current page form 
which the filter will get data for signing. The filter 
displays a dialog box confirming the data being 
signed and requesting the passphrase for the 
private key that will be used for signing. When it 
receives these data from the user, it creates a 
S/MIME signed message and encodes as a 
(possibly new) form field named “out” (if “out” is 
ommited, it is assumed to be the same as “in”). 
The flags control things like whether we want our 
own certificate included in the signature, whether 



  
 

to add the whole certificate chain up to the root, 
etc. 

  The advantage of this approach is that we can add 
form signing functionality to some web 
application just by activating Kapanga and making 
just minor changes in the web application –  if it 
doesn’t bother to verify the signature, it’s just a 
matter of chaning the HTML to include the sign 
command and storing the “out” field somewhere. 
A signature verification engine, however, would 
be recommended to deal with exceptions such as 
invalid signatures or to ensure that the signed 
contents is the same as previously sent (since it’s 
within the client’s control, a malicious user may 
change it). 

• Usable ID enumeration: This filter is triggered 
by the “send-usable-ids” command. First, it forces 

the request to become a POST (even if the 
browser has sent it as a GET or HEAD). Kapanga 
then builds a body with a list of PEM-encoded 
ultimately trusted certificates it has. This is 
extremely useful because the site can know in 
advance which identities we can assume, inform 
the user which ones are acceptable or not and help 
the user select an appropriate one for login or 
registration, reducing the likelihood of frustrating 
failures. 

  The webmasters we have been working with point 
this particular feature as the one that mostly 
contributes for the overall user acceptance – it 
makes it viable to make helpful web-based 
certificate enrollment/registration system almost 
as simple as traditional name+password+cookie 
methods, as shown in Figure 7. 

  
<HTML> 
 <HEAD> 
  <TITLE>Web Form Signing Demo</TITLE> 
 </HEAD> 
 <BODY> 
  <table width=100% bgcolor=#00DDFF> 
   <tr> 
    <td> 
      <font face="Verdana" size=+2><b> 
         Web For Signing Demo 
      </b></font> 
    </td> 
   </tr> 
  </table> 
  <form method=post  
  action="test.pl?x-kapanga-cmd=sign(in,out,1)"> 
  <table border=0><tr><td> 
<textarea rows=5 cols=40 name="in"> 
A sample text that will be signed. 
</textarea> 
</td></tr><tr><td align=center> 
  <input type=submit name="submit" value="  Ok  "> 
  <input type=reset  name="cancel" value="Cancel"> 
</td></tr></table> 
  </form> 
 </BODY> 
</HTML> 

(a) 

(b) 

(c) 

Figure 5:  The web form signing filter in action. In (a) we see a minimalistic web in the browser and its source HTML. Notice the action 
URL with a Kapanga special command. The command parser field intercepts this command and set things up to intercept the POST 
request body and sign the “in” field, putting the result in a new form field named “out”. The final one in the sign command is a flag to 
hasve the S/MIME signer not include the signer’s certificate, just to keep the signature block small enough to fit this screenshot. In (b), the 
exact intercepted data that will be sign is shown in a dialog box, where the program allows the user to specify which key he/she wants to 
sign with and asks for the key’s passphrase. In (c), the signature has been performed and sent to the server. A script in there displays the 
signed block for us. For sake of brevity, we have shown only the successfull case. Lots of failure conditions are handled as well – for 
instance, when the signature doesn’t match, or the signed data has been changed by the client, when the user cancels without signing or 
when the proxy isn’t activated. 



  
 

  Granted, this kind of enumeration may be abused 
by rogue sites to collect email addresses or 
tracking the user’s habits. We argue this is a 
necessary evil to provide a seamless HTTP  
HTTPS transition. Just in case, we left a 
configuration option that allows the user to either 
disable this feature entirely or get a popup then the 
site sends the enumeration command. 

• Remote ID activation: this filter is trigged by the 
“activate(sha1)” command. It sets the preferred 
default ID for this site (as identified by the host 
portion of the URL) as the certificate with the 
specified SHA1 fingerprint. If we have no such 

certificate or if it’s not ultimately trusted, no 
action is performed. 

  This command is typically used in pre-logon page 
just before the “addsite” command to have the 
correct ID selected by default in the Web Site 
Login Dialog (where the user is prompted for the 
passphrase).  

• HTTPS Logon: this filter is activated by the 
“addsite” command previously seen by the 
Command Parser filter. Recall that this command 
has three parameters: the SSL port (443 by 
default), a user-friendly site title/name and the 
error redirect URL. 

<HTML> 
 <HEAD> 
  <TITLE> 
   Client Auth Demo 
  </TITLE> 
 </HEAD> 
 <BODY> 
  <TABLE width=100% bgcolor=#00DDFF> 
   <TR> 
    <TD> 
      <FONT face="Verdana" size=+2><B> 
         Client Auth Demo 
      </B></FONT> 
    </TD> 
   </TR> 
  </TABLE> 
  <BR> 
  You are: <TT>O=$SSL_CLIENT_S_DN_O,..., 
               CN=$SSL_CLIENT_S_DN_CN</TT><BR> 
  Got your cert (chain is ok, didn't check 
  revocation though):<BR> 
  <IMG SRC="https://ca.freeicp.org/vica/en/line.gif"> 
   <BR><font size=-1><TT> 
$SSL_CLIENT_CERT 
   </TT></font> 
  <BR><IMG SRC="https://ca.freeicp.org/vica/en/line.gif">
 </BODY> 

(a) 

(b) 

(c)

(d) 

(e) 

(f) 

Figure 6: The HTTPS Logon filterset in a client authentication scenario. In (a) the user directs the web browser to an HTTP URL containing 
the command for adding the site to the Encryption Domain. As Kapanga was engaged to the browser, the request is actually sent over HTTPS 
because the command parser filter is executed early in the filter chain. Thus, when the request reaches the HTTPS Logon filter, the site 
address and port is already in the Encryption Domain. In (b), the site has requested client authentication and Kapanga asks the user which 
certificate he/she wants to use and the passphrase of its associated private key. Unlike Internet Explorer, Kapanga doesn’t show expired, 
revoked or altogether untrusted certificate, nor has a “remember password” checbox to ruin the whole security of the process. In (c), and the 
server have sucessfully completed the TLS handshake, sent the request and got the response back, where we see that the server sucessfully 
received and validated the user’s certificate. In (d) we see the returned page source HTML; comparing with the source HTML template in (f), 
we can see that the absolute URL in (e) was rewritten (notice the change from “https” to “http”) so that the image download would pass 
through our proxy as well. 



  
 

  The first thing this filter does is a purely user-
friendliness action: it inserts the site URL and title 
in the Bookmarks/Favorites list (accessible via a 
menu), unless there is already a bookmark for this 
site there. That way, the user can easily come back 
to this site without having to remember the URL. 

  Then the filter inserts the site’s address in the 
Encryption Domain, which is just a simple set 
mapping host:port pairs to SSL ports and error 
URLs. Since the Encryption Domain filter is right 
next in the chain, the request will be immediately 
rerouted to the HTTPS dispatcher. 

• Encryption Domain Filter: this filter checks 
whether the host:port in the URL of the current 
request is in the Encryption Domain. If it isn’t, the 
filter simply lets it follow its way on the filter 
chain, so it will ultimately reach the standard 
dispatcher and sent to the network over HTTP. 

  Otherwise, the request is taken out of the chain (so 
it won’t reach the standard dispatcher anymore) 
and fed to the HTTPS dispatcher, which, in its 
turn, starts the SSL handshake to the port 
specified in the site’s entry in the Encryption 
Domain. 

  If the server requests client authentication, the 
HTTPS dispatcher asks for the user’s private key 
for the default ID set for this site; if this key is not 
cached, the CSM will display a dialog box stating 
the exact site name and prompting for the user’s 
private key. If, on the other hand, the server 
doesn’t require client authentication, this step is 
skipped. 

  At this point in the SSL handshake, the HTTPS 
dispatcher receives the server’s certificate. If the 

CSM deems the it untrusted or if any network or 
handshake error happened, the dispatcher displays 
a dialog box explaining the failure and returns 
down the response chain a redirect to the error 
URL specified in the site’s entry in the Encryption 
Domain (if none was specified, the connection is 
simply broken). This way, the site has an 
opportunity to display a nice message telling the 
user that the HTTP  HTTPS transition failed 
and maybe provide options to retry or choose 
other authentication options (such as plain old 
name+password). This in direct contrast with 
popular web browsers, which simply break the 
connection on SSL failures, leaving the non-
technical user wondering what went wrong. 

  Finally, if no errors occurred and the certificate is 
held as trusted, the original HTTP request is sent 
over the HTTP tunnel and the response inserted 
back in the response filter chain. Also notice that, 
due to the SSL session caching, the whole 
verification process above happens only in the 
first connection to the site or when the cache entry 
expires. 

• URL Rewriter: This filterset is actually part of 
the HTTP Logon filterset described above. It acts 
only on text/html MIME types on requests 
through the HTTPS user agent. Its main purpose is 
to rewrite URLs of the form: 

  https://example.com/ 

  as 
  http://example.com/ 

  Supposing, of course, that “example.com” is in the 
encryption domain. If the site name in the above 

Figure 7: The send-usable-ids 
command allows the web application to 
provide friendly account creation 
assistance, explaining beforehand which 
certificates are acceptable and which are not 
and thus minimizing frustrating failures. 
The “login” and “register” links, use the 
activate command to force that 
particular certificate to be selected, 
minimizing user errors and then redirects to 
another URL with the addsite command, 
inserting the site into the Encryption 
Domain and starting the transition to the 
HTTPS site. Even so, the SSL handshake 
might still fail if the site’s certificate 
doesn’t pass Kapanga’s validation. In this 
case (not shown in the picture) the “errpath” 
parameter in the addsite command 
would redirect the user back  to a page 
explaining what went wrong and offering 
further help. At the bottom of the page, a 
form allows the user to start the wizard-
based certificate issuance process directly 
from the web page: then clicking on Issue, 
the wizard pops up with the name and email 
fields already filled in. 



  
 

URL is not in the encryption domain, it is left 
unchanged. 

  That way, any further requests initiated by 
consequences of the browser parsing the current 
HTML will again be sent to us – recall that the 
engager configured us as the browser’s HTTP 
proxy only – we do not receive any HTTPS 
requests the browser generates. So this filter tries 
to ensure that all URLs in the HTML the browser 
receives point to URLs with the  HTTP scheme 
what we can proxy. 

  The discussion omitted several details for the sake 
of clarity. In our implementation, it is comprised 
of two filters: a response header filter for rewriting 
URLs in the Location field during redirect 
messages; and a response body filter the that 
parses the HTML looking for tags with src, 
href and action parameters and rewrites only 
URLs within them – that way, any URLs within 
the readable text (outside the tags) won’t be 
touched. We also made it rewrite URLs in 
window.open JavaScript instructions, since it 
occurs quite often in many websites. 

  The response body filter is the system’s Achiles 
heel: since it is static, it misses any absolute URLs 
generated dynamically by embedded languages 
such as Java, JavaScript or VBScript, nor it sees 
absolute URLs embedded in Flash movies or other 
plugin-specific objects. However, things work 
remarkably well in sites where nearly all 
embedded URLs are relative. 

• Keygen Tag Mangler: This filter replaces the 
<KEYGEN…> tag used by Netscape-derived 
browsers in web forms to generate a new keypair 
[12] by a combo box (a 
<SELECT>…</SELECT> sequence in HTML 
parlance) allowing the user to choose one of the 
allowed key sizes. The original name of the 
KEYGEN tag is prepended with “x-kapanga-
keygen-”, so that the Keygen Interceptor field 
described below can intercept it. This filter is only 
active when previously told so by the command 
parser. 

• Keygen Interceptor: this filter acts on response 
bodies of POST requests and only when the 
mime-type is “application/x-www-form-
urlencoded”. It looks for form fields with the 
name starting with “x-kapanga-keygen-”. Upon 
finding it, it starts the New Digital ID Wizard 
right in the point where the user chooses the 
passphrase (see Figure 4c). When the wizard is 
done generating the keypair, it is converted to an 
SPKAC and sent over the form field with its 
original name (i.e., the “x-kapanga-keygen-” 
previously prepended is removed). 

• Certificate Interceptor: this filter grabs the 
response bodies in “application/x-x509-
{user,ca,email}-cert” MIME types. It also looks 
for these content-types in each section of multipart 
MIME types as well – this is the mechanism used 
by web sites and commercial web-based CAs to 
install certificates and certificate chains. The data 
is decoded (DER/PEM-armoured detection is built 
in and both single certificates and PKCS#7 bags 
are supported) and inserted directly to the 
Certificate Store.  

  If one of the inserted certificates matches a 
previously sent SPKAC, the automatic attestations  
are performed. If the inserted chain contains a 
Root CA but no automatic attestation has 
occurred, a dialog box pops up informing the user 
that he/she may be interested in performing a 
manual attestation. 

2.3 Engagers 
The engagers are responsible for setting up the data 
interception in each browser by inserting ourselves in 
the proxy chain through the following process: 
• The browser’s current proxy settings are detected 

and saved for later restoration; 
• The address and port of the proxy the browser is 

currently using for sending HTTP requests is 
detected and the engager signals our default 
dispatcher to use this proxy. If the browser isn’t 
using any HTTP proxy, we tell our default 
dispatcher to do the same and send the requests 
directly; 

• The browser’s HTTP proxy settings are 
overwritten with “localhost:ourport”, where 
“ourport” is the port where we’ve previously 
started a server to listen to this specific browser’s 
requests; 

• The address and port of the proxy the browser is 
currently using for sending HTTPS requests is 
detected and the engager tells the HTTPS 
dispatcher to use this proxy. Unlike the HTTP 
proxy, however, we don’t overwrite the browser’s 
setting. 

Implementing this seems simple, but each browser 
presented its own special cases.  
The engager for Internet Explorer proved to be the 
simplest to implement because IE has simple API calls 
to change the settings and have its currently running 
instances instantaneously reload any changes made to 
it. Slight complications arise due to the several 
versions of IE and the API itself. The most severe is 
with IE versions 5 and above: since it supports per-
dialup connection profiles, each with its own proxy 
settings, the process above has to be performed for 
each dialup profile. In the end, the IE engager we 
implemented works with all IE versions all the way 



  
 

back to version 3. Version 2 and below didn’t support 
proxies at all. 
Implementing the Mozilla engager, on the other hand, 
proved to be quite a challenge because of the lack of a 
simple way (as far as we know) to signal its currently 
running instances of any changes in its settings. 
Mozilla’s settings are read once during program 
startup and kept in memory. We can easily overwrite 
the configuration files and its format is quite simple 
(although figuring out where it is located means 
messing with registry.dat /appreg file [10]). 
This works well for inactive profiles, but not for the 
active ones – the running instance doesn’t notice that 
Kapanga (an external process, from its point of view) 
changed the files and thus doesn’t reload them. And it 
overwrites our changes when saving the settings back 
to disk as it finishes. 

 
Figure 8: A JavaScript program is the only way to set the proxy 
settings in the currently running instances of Mozilla. However, 

since changing user settings is a privileged operation, its execution 
prompts a confirmation dialog box, somewhat thwarting the 

convenience of the engager. 

The method we came up with works but is less than 
elegant: we generate a web page in a temporary, 
randomly-named file the local filesystem with a small 
JavaScript program that performs the changes. Then 
we direct the currenly running instances of Mozilla 
(via DDE [9] on Windows or X-Remote [8] protocol 
on Unix) to open this page. Since changing those 
settings requires granting special privileges to the 
script, the first time it is run Mozilla displays a 
confirmation dialog box, as shown in Figure 8 above.  
The paranoid may regard this procedure as opening up 
a vulnerability itself – from there on, any local scripts 
(using the “file:///” scheme) may change Mozilla’s 
preferences for that profile. It could have been worse, 
though: we considered and rejected the idea of 
avoiding the creation of a temporary file by sending 
the Javascript program over HTTP – that would mean 
the user should allow script execution over the 
“http://” scheme, which would open it up to abusive 
scripts from anywhere on the Internet. 

A limitation of our current engager implementations is 
that they cannot handle Proxy AutoConfiguration [11], 
which is quite popular. Since implementing this 
support would require a quite capable JavaScript 
interpreter, we have chosen to deal with it in future 
versions; we felt that for the purposes of proving the 
concept, it was not essential. 
Notice that engagers are just a convenience feature for 
users. They’re obviously not necessary for the rest of 
the proxy to work, so long as the user changes the 
browser and Kapanga’s proxy settings manually. That 
way, this whole system works even with browsers our 
implementation doesn’t have specific engagers for. All 
that is required is that the browser must have proxy 
support. We’ve successfully run Kapanga in 
conjunction with many other browsers such as 
Konqueror, Opera and even Links (a console-based 
browser), just for kicks. 

3 OTHER DESIGN ALTERNATIVES 
Before settling for the particular set of design criteria 
and features we described, we considered and rejected 
a few other alternatives. While the reasons for some of 
them are pretty obvious, other are quite subtle and 
perhaps debatable. In the next subsections we describe 
a few choices we had to make and the rationalie 
behind tem. 

3.1 Traffic Interception Method 
Using the browsers’ native proxy support was an 
obivous choice – web proxy technology was 
specifically design to intercept and forward HTTP 
traffic and it’s widely deployed and matured. Not that 
we lacked choices:  
• Internet Explorer has a feature called Browser 

Helper Objects [15] that could make interception a 
lot easier on that platform because we wouldn’t 
have to deal with next-hop proxies and its 
particularities (PAC, multiple authentication 
methods, etc). However, we didn’t want to confine 
Kapanga’s applicability to Windows only; as 
previously mentioned, we wanted it to work with 
any browser on any platform; 

• Implementing Kapanga as a SOCKS [20] proxy 
might also work, but it would involve guessing 
port numbers where HTTP traffic goes.  Besides, 
not all proxies support SOCKS; 

• Redirecting the socket API calls would not only 
require the same port number guesswork, but it 
would require a lot more system-dependent code 
and it wouldn’t allow Kapanga and the browsers 
to run on different machines. 

3.2 The Pure-Scheme vs. Cross-Scheme Dilemma 
Kapanga uses what we call a cross-scheme system: 
when a site is in the Encryption Domain, we 
effectively map portions of the HTTPS scheme’s 



  
 

address space into the HTTP’s address space. That is, 
the browser has no notion on whether the request is 
going through HTTP or HTTPS – this state 
information is in Kapanga’s Encryption Domain. This 
has consequences:  
• Bookmarks made when a site is in the encryption 

domain will probably not work when the site is 
not in the encryption domain or when Kapanga is 
not running at all (unless the site designer was 
very careful to handle this);  

• We had to create the URL Rewriter Filter to force 
absolute URLs embedded in the HTML back to 
us. As previsouly mentioned, though, this fails 
with dynamically generated URLs. 

Earlier in the design process, we considered – and 
rejected – what we called a pure-scheme system: we 
would actually implement two proxies, one strictly 
HTTP to HTTP and the other strictly HTTPS to 
HTTPS. Given that the namespaces don’t collide, there 
would be no need for a URL Rewriter filter nor would 
we have problems with bookmarks.  
This sounds like a good idea if we think only in terms 
of the pure HTTP proxy; however, given that SSL was 
specifically designed to be resistant to interception and 
tampering, the pure HTTPS proxy would have to be, in 
fact, a generic HTTPS spoofer/man-in-the-middle 
attack.  
From a purely cryptographic point of view, this is 
quite easy to implement: during the initial SSL 
handshake, we send the browser a fake server 
certificate generated on the fly. From the user interface 
point of view, on the other hand, this has a problem: it 
triggers the browser’s SSL warning dialogs, since the 
fake certificate isn’t signed by a CA chain the browser 
trusts. This is clearly unnaceptable, not only in light of 
our philosophy of non-intrusiveness and minimum 
hassle for the users, but also because SSL-derived user 
interface problems are exactly what Kapanga was 
originally intented to solve in the first place. 
We could make the SSL spoof work silently if we 
inserted a new root certificate in each browser’s 
certificate store, but that would bring disadvantages: 
first, it would again limit Kapanga to run in the same 
computer as the browser (a restriction we didn’t want 
to have); second, the exact mechanism for inserting 
new roots varies from browser to browser: IE stores 
trusted root CAs in the Windows Registry, while 
Mozilla-derived browsers use a Berkeley-DB file. This 
would increase the amount of platform-specific code 
Kapanga would have – something we’ve been trying to 
minimize all along –, not to mention that the process 
would fail if Kapanga runs without the proper 
privileges to write to those certstores. 
There are other arguments against the SSL spoofer and 
the pure-scheme idea:  

• Performance would suffer, since we’d have three 
encryption/decryption rounds: the browser 
encrypts the data, Kapanga would decrypt it, 
modify it and reencrypt it again; 

• It wouldn’t work on browsers without native SSL 
support; in contrast, the cross-scheme approach 
allows Kapanga to work even if the browser 
doesn’t support SSL; 

• Writing and releasing the code of a portable silent 
auto-engaging SSL spoofer would be more like 
giving a powerful weapon to the blackhats than a 
powerful protection to the average user. 

Yet another advantage of the cross-scheme appoach is 
that we give the user the choice of not using Kapanga 
at all if he/she feels like, so we neither mess nor risk to 
break the user’s web banking systems and other 
critical applications they already have running. 

4 CONCLUSIONS AND FUTURE WORK 
We described the architecture of a solution for 
perfoming the cryptographic and user interface aspects 
of HTTPS channel establishment and web form 
signature outside of the web browser. The key idea is 
to implement the crypto services in a proxy that 
rewrites the HTML on the fly and converts it to 
HTTPS when appropriate, so we can bypass the 
browser’s and protocol limitations while retaining 
compatibility. Thus, any browser with proxy support 
can be used – the user is not forced to adopt any 
particular web browser. Another advantage is that our 
approach does not depend on any proprietary 
architecture such as ActiveX or Java. 
Our primary motivation was to play with newer user 
interface concepts to make client-side PKI easier to 
use. A few results stand out: in other to make sites 
with client authentication that user’s didn’t hate, we 
had little choice but to address a few protocol and user 
interface gaps: 
• A web site should be able to enumerate the user’s 

certificate so as to offer assistance in registration 
as preparation for the HTTP-to-HTTPS transition 
(the SSL handshake with its certificate validation 
process); 

• There had to be a way to redirect the user to an 
URL with a nice explanation, continuation options 
or alternative authentication methods when the 
SSL handshake fails. It’s just not acceptable to 
break the connection and leave the user with a 
cryptic error message; 

• The certificate issuance process shouldn’t be so 
fragile as to break because of lack of ActiveX 
upgrades, different browser versions or the phase 
of the moon. Nor it should induce the user to store 
the private key without some effort to set up a 
decent passphrase. The process must be simple, 
reliable and hassle-free. Having it instantaneous is 



  
 

a plus – with so many online services with 
instantaneous registration processes, it is hard to 
justify the severe identity validation procedures of 
most CAs; 

• There really should be a simple way to do such a 
simple thing as signing a web form. 

The implementation of those features in an external 
proxy enabled us to bypass the browsers limitations 
while providing the illusion that those features were 
“augmented” to the browser in an non-intrusive way. It 
also required minimal or sometimes no change to the 
server side at all: nothing needs to be changed for 
client-based HTTPS authentication; a simple change in 
the action URL in HTML forms enables form field 
signature (bigger changes may be needed if the 
application needs to validate the signatures); and small 
changes to the HTML page where the Nestcape vs IE 
issuance process decision is made is enough to support 
Web-based commercial CAs. 
The price of this “backwards” compatibility is paid in 
the considerable complexity of the architecture and the 
horrible contortions our tool has to go about to 
implement them. Some problems may not have a good 
solution at all, such as the static nature of the URL 
rewriter filter not being able to handle dynamically 
generated URLs; this limits the tool’s applicability to 
“well behaved” sites only. 
There are many worthwhile future improvements on 
sight. Making the proxy work for generic TCP 
connections as well as HTTP may help extend the use 
of client-side authentication for several other protocols 
such as SMTP, POP3, VNC, X and many others. 
Extending the program to act as a Mail Transfer Agent 
(since every MTA is kind of a proxy) holds the 
potential for allowing us to make the same for mail 
clients: having the digital signature generation and 
verification be performed out of the mail client. Going 
further in this idea, we could also add support for 
encryption and decryption to allow message 
confidentiality. We are also working on making the 
CSM support PGP and SSH keys as well in order to 
achieve Jon Callas’ concept of format agnosticism 
[21], consonant with our philosophy of bridging the 
PKIs together. 
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