

A PROXY-BASED APPROACH TO TAKE CRYPTOGRAPHY OUT OF THE
BROWSERS FOR BETTER SECURITY AND USABILITY

Marco Antônio Carnut (kiko@tempest.com.br)
Tempest Security Technologies

Evandro Curvelo Hora (evandro@tempest.com.br)
Universidade Federal de Sergipe - DCCE/CCET

ABSTRACT
This paper describes the implementation of a multiplatform selective filtering/rewriting HTTP proxy that allows the PKI-related

operations – such as digital certificate issuance, web form field signing and HTTPS client authentication – to be performed
entirely outside the browser, even though the browser continues to be used for what it’s good at: rendering web pages.

Implications such as better usability through improved user interfaces are discussed in light of a prototype implementation.

1 INTRODUCTION
The SSL/TLS protocols were originally designed to
provide encrypted and authenticated channels for web
servers and clients. Even today, they are almost
exclusively used to authenticate servers, despite its
support for client authentication. There are many
reasons for that: in [4], it is shown that getting a client
certificate – even a free an instantaneous one – is too
much of a hassle for the average user. Internet
Explorer (IE), the most popular web browser, makes it
all too easy to store the certificate without a
passphrase; besides, its client certificate-based logon
window is confusing, showing expired and revoked
certificates along with valid ones and it is outfitted
with a “remember password” checkbox that causes the
passphrase to be stored unencrypted, invalidating
much of the security the process might provide.
The way failures are handled is also confusing: when
the server can’t validate the client certificate (either
because it couldn’t build a trusted certificate chain or
the client certificate was found to be revoked), it
simply breaks the connection; there are no provisions
to redirect the user to a nice page explaining what went
wrong and how to fix it.
All these usability problems cause enough user
rejection that webmasters find it simpler to use weaker
authentication schemes such as
name+password+cookies. Although vulnerabilities
have been discovered (and in some cases fixed) in
most browser’s crypto implementations, bad human-
computer interface (HCI) is often appointed as a
serious hinderance to PKI adoption in general [14] and
client-based authentication in particular [18].
There have been a few attempts to improve the user-
friendliness of client authentication, such as VeriSign’s
Personal Trust Agent [17] and RSADSI’s Keon
WebPassport [16]. However, as they are both ActiveX
controls, they are Windows-only solutions and since
they are activated after the SSL handshake, they have
to resort to proprietary authentication schemes.
Another great promise brought by public key
cryptography is the use of digital signatures as a way
to detect tampering on digital documents. Some web
browsers can natively sign the contents of web form
fields, but many – most notably IE – do not support

this feature. In IE, it can be implemented using
ActiveX or even Java (although that requires installing
CAPICOM, making the process less transparent), but
they tend to be too cumbersome for large-scale
deployment.
This paper investigates an alternative way to provide
client certificate-based authentication and web form
signature, along necessary subsidiary services such as
digital certificate issuance, by performing all the
cryptographic and user interface chores in a separate
program: we use a selective cryptographic
filtering/rewriting HTTP proxy to implement all the
PKI-related features, leaving to the browser only what
it’s good at: rendering web pages. This approach has
the advantage that it works with any browser that
supports proxies.
Specifically, we wanted to make a general purpose
utility for handling digital certificates that provided
easy-to-use digital signature generation and
verification functions; and that could be integrated
with the web browser to allow web form signature and
client certificate authentication in HTTPS with a much
better user interface and security features under our
control. We also wanted this utility to be a testbed for
new HCI ideas applied to client-side (primarily, but
not limited to, web-based) PKI applications.
This paper focuses on the cryptographic, PKI and
protocol issues needed to “take crypto on our own
hands” (as opposed to letting the browsers do it), while
simultaneously striving to maintain backwards
compatibility. Although we do make extensive use of
screenshots to illustrate some features and preliminary
user interface (UI) ideas we implemented – and
sometimes we even indulge in describing some of its
details and user feedback we received –, an analysis of
the merits of our tool’s UI is beyond the scope of this
paper, for it requires entirely different approaches and
techniques. What we want here is to show one possible
way it can be done.
Besides general familiarity with the
X.509/PKIX/PKCS standards and PKIs in general, this
text assumes the reader has considerable familiarity
with the HTTP [1] and HTTPS [2, 3] protocols.

2 OVERALL ARCHITECTURE
Our tool, code-named Kapanga, is an executable
program that typically (although not necessarily) runs
in the same computer as the user’s web browser. A
schematic depiction of its overall architecture can be
seen in Figure 1. A brief description of its major
components follows:
• Certificate Store Manager (CSM): provides all

the underlying cryptographic services needed by
all the other components. It manages and provides
access to all the cryptographic objects
(certificates, certificate revocation lists, private
keys, signatures, etc) stored in various kinds of
storage media (the local disk, removable storage
devices, crypto-capable devices such as smart
cards, etc); provides access to cryptographic
algorithms and protocols. The CSM is detailed in
section 2.1 .

• Filtering HTTP Proxy Server: receives the
requests from the browser and feeds them through
the filter chain. If no filters consume the request, it
is passed to the HTTP dispatcher nearly
unchanged. Filters may alter either the request
before they’re sent to the dispatcher or the replies
berfore they’re sent back to the browser. These
changes implement the program’s main features,
as it will be detailed further along.

• Engagers: they are in charge of changing the
HTTP proxy settings of all supported browsers to

point to our own proxy described above, so that
we get to intercept all HTTP traffic initiated by
the browsers. Engagers are described in detail in
section 2.3 .

• Default Dispatcher: an embedded HTTP user
agent that sits at the end of the filter chain. It acts
like a “default route” in a routing table: any
requests that reach it are sent their destinations,
either directly or via another next-hop proxy. It
also proxies any authorization requests (e.g.,
Basic, Digest or NTLM authentication) that the
next-hop proxy may require, so the authentication
protocol is handled by the browser itself and any
username+password dialog boxes that may be
required is also shown by the browser itself. Upon
receiving the results, it pipes them back to the
response filters, which also play crucial security
roles.

• HTTPS dispatcher and the Encryption
Domain: similar to the default dispatcher, but
tunneling the requests over TLS/SSL [2]. For
performance reasons, it features support for
rehandshakes and session caching [3]. It relies
heavily on CSM services for validating the
servers’ certificates and providing client
authentication if the server so requires. A request
is sent through this dispatcher if the host:port
of the request is listed in a set called Encryption
Domain (this detour is actually accomplished by a
special filterset collectively known as the

HTTP Dispatcher

Filter #n

HTTPS
Dispatcher

Filter #2

. . .

HTTP proxy at
3128/tcp

Filter #1

. . .

.. .

.. .

HTTP
Requests

Infrastructure
Filters (version
tag, chunked

encoding, etc...)

Encryption
Domain Filters

Web Form
Signing Filter

Security features
filters (web logon
over HTTPS, form

signing, etc)

The Engager tells the HTTPS
dispatcher to use the same HTTPS
proxy the browser is using

Engager

The Engager
configures the

HTTP dispatcher
to use the proxy

server the
browser was

previously using.

The engager changes
the currently running

browser instances’
configuration to use
ourselves as proxy..

Internet

HTTPS-Capable
Server

Figure 1: Overall architecture of the client proxy, which runs in the same computer as the browser. The engager changes the browser’s
proxy settings so that it uses our own local proxy. Before doing that, though, it detects which HTTP and HTTPS proxies the browser was
using and configures our dispatchers to use them. This effectively puts us in the middle of the proxy chain. New HTTP requests originated
by the browser will pass through our proxy, where our filters may act upon them. In fact, we have two filter chains, one for the outgoing
requests and other for the incoming responses; some of them act upon the headers, other upon the bodies. Some features actually require
several filters in cooperation to implement. If none of the filters actually consume the request (i.e., take it out of the chain), it reaches the
default dispatcher in the end of the chain and it is sent as an HTTP request. The Encryption Domain filterset is a special set of filters that
reroutes the requests that match certain criteria to be sent over as HTTPS. The HTTPS dispatcher makes use of the certificate store
services (not shown in this picture) to validate the certificates and perform client authentication (with a friendly UI) if the site so requests.

“Encryption Domain filters”). As with the default
dispatcher, it may either send the request directly
or use the CONNECT method to tunnel it over a
next-hop proxy [5] if the engager has previously
told it so. It is also responsible for sending back
any authentication requests that the next-hop
proxy may require.

2.1 Certificate Store Manager
Underlying the whole program is the Certificate Store
Manager, providing crypto and PKI services to the
other subsystems:
• Certificate, CRL and private key enumeration

and caching: all those objects can live in one or
more physical media. The local hard disk is called
the primary store location, bringing a minimal set
of certificates right from the installation
procedure.

 The user may configure one or more secondary
locations. Those are usually removable media,
such as CD-ROMs, diskettes or USB flash
memory devices (“pen drives”). Every three
seconds or so the certificate store manager checks
to see if these devices are readable and, if so,
rescans them. This way, a user may have and use
his/her certificates/keys in a removable storage
medium during their entire lifetime1.

 Crypto devices such as smartcards are also
supported, although they are handled as special
cases because some objects (private keys,
primarily) may not be exported and we may only
operate on them via the device’s built-in
cryptographic capabilities.

 The resulting in-memory cache can be seen as a
concatenation of all the contents of all of the
devices. CRLs are handled as a special case –
since some of them tend to get very big, they are
deallocated from memory as soon as the CSM is
done using them in the trust calculations.

 Private keys are handled as special cases as well.
When stored in crypto devices, the CSM directs
all its crypto primitives to the device’s drivers to
make use of its embedded functionality;
otherwise, they are loaded only when needed and
the crypto primitives (signing/decryption) are
directed to the software-based implementation.

 Our certificate store has another type of object
called attestation signature or simply attestation.
It is a signature block on someone else’s

1 Some of our users like to call this “the poor man’s smartcard”. We
try to tell them this is a particularly nasty misnomer – not only
because certain media such as USB “pen drives” are actually more
expensive than smartcards (even including the cost of the reader),
but also because they lack the tamper-proofness and crypto
capabilities of the latter.

certificate made by the private key of a user to
indicate that it trusts that certificate (typically a
root CA). This signature is detached – that is, it is
stored in a separate file in a file format of our
own devising; we will have more to say about
attestations in section 2.1.1. .

• Chaining: after the certificates are loaded from
the physical stores, the CSM tries to chain them.
First, duplicates are discarded and certificates
issued by the same CA are sorted by their
notBefore fields and assembled as a doubly-
linked list. The best current certificate is selected
by applying two criteria: a) it is the one with the
most recent notBefore and b) it must be still
within validity (that is, with the current date/time
before its notAfter field). If no certificate
satisfies both requirements, we settle for the one
that satisfies only (a).

 After that we build several indices for fast lookup:
one keyed by the certificate’s SHA1 hash, other
by its Subject Key Identifier extension [7] and
another by subject DN. This last one has a
peculiarity: only the best current certificates make
to this index; the future and previous editions
don’t get there.

 We then chain the certificates in the usual way,
using the recently computed indexes to speed up
finding the issuer of each certificate in the store
(matching SKI/AKI pairs, when available, and by
subject/issuer DNs as a last resort). We set the
parent pointer of each certificate to the issuer and
record its the depth in the tree (the whole chaining
algorithm uses a breadth-first search precisely to
make that trivial).

 CRLs are considered as an appendage to their
issuer certificates and are chained to them. Private
keys are also appendages and are linked to the
certificates with the corresponding public key (the
private key format stores the public key as well, so
this comparison is straightforward).

• Trust Status Calculations: With all the
certificates and associated objects properly
chained, we start to verify their validitity periods,
signatures of its issuers, attestations, etc. It is
interesting to notice that all trust calculations are
relative to the currently selected default ID, since
attestations depend on it. Thus, whenever the user
changes the default ID via the GUI, the whole
trust statuses are recomputed. Section 2.1.2.
describes each trust status in detail.

The CSM has a few other utilities and services:
• Public CSM Server: We coded a version of the

CSM in a web server that is offered as an
associated on-line service to the user and acts a
public certificate/CRL repository. Over the years,

we’ve been dumping on this server every CA
certificate we lay our hands on. Whenever a
certificate is unchained, the Kapanga may query
the CSM server (either automatically due a
configuration option or manually through a pop-
up menu in the GUI) to see if it knows the missing
issuer. The external CSM may also return CRLs –
it has a built in robot that tries to fetch CRLs of all
CAs it knows about from its distribution points.

• Automatic CRL Download: Just like the public
online CSM server, the program’s internal CSM
has a similar feature – it automatically tries to
download the latest CRLs from the addresses
advertised in each CA certificate’s
cRLDistributionPoints extension. It can
do so upon user request or automatically in the
background. In the automatic mode, the list of
candidates URLs is rebuilt each four hours
(configurable) and we try to downloads CRLs
from them. In case of success, the whole trust
settings are recomputed and redisplayed. If some
download fails, the next attempt time is subject to
an exponential backoff algorithm with a maximum
period of one week.

The overall effect we tried to achive is that the user
doesn’t have to worry about the intricacies of
certificate management at all: he/she would only use
the program features, collecting certificates along the
way, and the CSM will do its best to ascertain its trust
statuses and keep everything updated – without

removing from the user the possibility of doing things
manually if he/she so wishes.

2.1.1. Attestations
Attestations are signatures of a private key in someone
else’s certificates as a means of informing Kapanga
that the owner of that private key trusts the signed
certificate. They are akin to PGP’s key signatures or
introductions, except that they are stored in a file
separate from the certificate itself.
We originally implemented attestations only for Root
CAs as a more secure means to tell the CSM that
particular CA is to be considered trusted. We were
trying to avoid a simple vulnerability most browsers
have: it’s quite easy write a malicious executable that
inserts a new fake root CA in their trusted certstore –
in IE’s case, it can be done in a few lines of code, since
the root CAs are stored in the registry; for Mozilla-
derived browser’s, it requires only slightly more effort,
since the root CAs are in a Berkeley-DB file.
As we will see in the next section, Kapanga trusts root
CAs only if they’re signed by the user’s key. We say
that the only truly trusted certificate is the user’s own,
because he/she has the corresponding private key. All
the trust placed in the other certificates, even root
certificates, stems from the user. Hopefully it also
makes the root insertion attack slightly harder, for it
will require the attacker to induce the user to sign the
corresponding certificates.

Figure 2: The CSM trust calculation results as displayed in the GUI. Here we have a certificate store with (1) three unattested roots and (2)
three attested, trusted roots. There is also an Intermediate CA (3) that cannot be trusted because it’s unchained, meaning that we lack its issuer
root. All children of trustred roots are marked as indirectly trusted unless they’ve been revoked (4), their signatures don’t match (6), or it’s not
within its validity period (7). The item marked in (5) is the current ID (aking to PGP’s “default key”). All trust calculations are relative to the
attestations (detached signatures on root CAs) this ID has previously performed.

While this does improve security, this may seem as an
extra complication: we require the user to have a
certificate and private key; Kapanga is nearly useless if
the user doesn’t, since it will trust no one. After getting
a certificate, the user would need to perform a few
attestations. We tried to make this simple by
integrating the attestation process with the certificate
issuance/import processes: as shown in Figure 4, when
the user gets a new certificate, a few checkboxes cause
its root to be automatically attested, as well as all other
roots this root trusts: root attestations on other roots are
our bridge-CA mechanism.
Later on, we generalized the attestation system: the
user now can sign any certificate he/she chooses.
This effectively makes Kapanga’s trust system a cross-
breed between the X.509’s strictly hierarchical and
PGP’s web-of-trust models. While we were inspired
by and tried to follow RFC 3280’s certificate
validation rules, we can’t really say we follow them to
the letter because it ended up evolving in a different
direction.
Other interesting analogies can be drawn with other
public-key based systems: for instance, signing an
unchained server certificate in Kapanga is akin to
adding a SSH server key to the
~/.ssh/known_hosts file, except it’s harder to
spoof because of the signature.

2.1.2. Trust Statuses
The trust calculations assign one of the following
statues for each certificate:
• Ultimately Trusted: this means that we have the

private key corresponding to this certificate. Thus,
it is an identity we can assume. Those certificates
are considered to be “the root above the Roots”,
the true starting point all trust stems from. As a
result, such certificates are considered trusted
even if they’re not properly chained or if its chain
doesn’t go all the way up to a trusted root; we say

this status overrides the “Unchained” and “No
path to trusted root” statuses described below.

• Directly Trusted: this means that this certificate
has been attested by the current user. In other
words, there is a signature block on this certificate
correctly verified against the current user’s public
key as proof that the user gave his/her direct
consent that this certificate must be considered
trusted. If this a CA certificate, this causes all
child certificates to be considered indirectly
trusted.

• Indirectly trusted: this means that the CSM has
verified that the signature of the issuer is valid and
that the issuer is trusted (either directly or
indirectly).

• Not Within Validity: the certificate is not trusted
because the current date and time is after the value
specified in the certificate’s notAfter field or
before the value specified in the notBefore
field. This status overrides all others (even the
Ultimately Trusted stauts): the CSM doesn’t even
bother checking anything else.

• Unchained: the certificate cannot be considered
as trusted because it we don’t have its issuer. This
status applies only to intermediate CAs and end-
entities; it obviously can’t happen in Root CAs.
This status can override all the previous ones
except the “Ultimately Trusted”.

• Not Attested: this only happens to Root CAs. The
certificate cannot be considered as trusted because
we either have no valid attestation signature on
this root from the current user’s.

• No path to trusted root: the certificate cannot be
considered as trusted either because the root of the
chain has not been attested (it is not directly
trusted) or some of its issuers are unchained (the
chain doesn’t go all the way up to a root CA).

Figure 3: Manual Attestation Process. The user
must sign the Root CA’s certificate with his/her
private key. Only then this CA will be considered
directly trusted. The UI was designed as a single-
step dialog box presenting the most important
certificate identifiers for manual checking against
other trusted sources, instead of the unecessarily
complex and sometimes scary multi-step wizards
most browsers have. The text succintly explains
that this must be an informed decision. In this
screenshot, we see the program requesting the
private key’s passphrase, which reinforces the
sense of importance of this action. An always-
enabled but impossible to disable check box
reminds the user that passphrases are case-
sensitive. Root CA attestations are also integrated
with the certificate issuance/import dialogs, so
users rarely come to this dialog to perform root
attestations; it is more often used to attest
certificates other than roots.

• Revoked: the certificate is not trusted because its
serial number is listed in its CA’s Certificate
Revocation List (CRL) and the CRL itself is valid.

The trust statuses for CRLs work a bit differently. A
CRL is considered valid if the signature of its CA
matches just fine, regardless of whether it is outdated
or not. If a given certificate is listed in some CRL, it is
flagged as revoked even if the CRL is not the freshest
possible; the CRL checking engine tries to do the best
with what it has. It is the responsibility of the
automatic CRL dowload feature to try to keep CRLs as
up-to-date as possible.
When the CRL checking engine is asked about
whether a certificate is revoked or not, it returns an
answer consisting of three items:
• Is_revoked: a tristate flag saying whether the

certificate is revoked (true), or not (false) or if we
can’t ascertain because we have no CRL for this
CA (unknown). If this flag is unknown, the
remaining two items describe below are
undefined.

• Is_outdated: it says whether the CRL used to
compute the is_revoked status is outdated or not.

• Reference date: if is_revoked is true, it returns
the revocation time and date as taken from the
CRL. Otherwise, it returns the CRL’s
lastUpdate field, meaning that we can be
certain that this certificate isn’t revoked only up to
the moment the CRL was issued.

2.1.3. Certificate Issuance, Import and Export
Another important service provided by the CSM is
providing support for having new certificates issued
through a Certificate Authority. From the point of view
of the CSM itself, its just a matter of having an RSA
keypair generated and converting it to an Netscape
SPKAC (Signed Public Key and Challenge, see [12])
format (a Certificate Signing Request would seem a
better choice, but the reason for that will become clear
further along).
From the point of view of the user interface, there are
two very different implementations:
• The classic web-based style, in which the user

directs his/her browser to the CA web page, fills
some web forms and the browser activates the key
generation procedure. Since this issuance system
is intrisically intertwined with the filter system, it
will be described along with our discussion of the
HTTP filters in section 2.2 .

• We also wanted to have a PGP-like wizard-based
instantaneous key generation. To that end, we
implemented a specialized wizard that uses
FreeICP.ORG’s Entry-Level CA [4] to allow the
user to get a free, instantaneous short-lived

certificate. The rest of this subsection describes
some particularities of this process.

In the first step, the user enters his name and email
address, being also warned that the process requires
being online or else the process will fail – this is unlike
PGP. The user is also asked to reconfigure his/her
spam filters to prevent the CA notification messages
from being blocked.
After that, the wizard asks the CA whether the email
address the user requested is already taken – that is,
whether the CA has in its database a valid certificate
issued for that email address. This is implemented by
sending the CA a request for a “Revocation
Reminder”. If the server responds with a “No valid
certificate associated with this email address” message,
we let the user proceed. Otherwise we inform that the
user is going to receive an email with revocation
instructions and ask him/her to follow it before coming
back to try to issue the certificate again. In this
situation, the “Next” button of the wizard is grayed
out, making impossible to proceed.
The next step is setting up the passphrase – historically
the step users hate the most. This is constitutes a good
opportunity to describe what kind of usability ideas
we’ve been experimenting with, so we will detour
from the “protocol nuts and bolts” approach we’ve
been adopting so far and make an aside about our UI
designs.
The philosophy is to try to steer the user to do the right
thing, both through education and trying to prevent
unwittingly dangerous actions. However, it can’t be
frustrating either, so the restrictions must not be
absolute; they have to be bypassable, although the user
must feel frowned upon when choosing the insecure
path.
As usual, we have two passphrase text entry boxes. By
defaut, they are set not to show the text being typed,
replacing the characters by asterisks. Just like in PGP,
however this is bypassable by unchecking a “Hide
Typing” checkbox. This is needed because some poor
typist users take too many attempts to make the
content of the text boxes match that they become
frustrated and quit. But unlike in PGP, if they opt to do
this, they get a insistent blinking message warning
them to make sure they aren’t being watched or
filmed.
We also implemented a warning about Caps Lock
being enabled, now common in many programs.
Also common is the passphrase quality meter. The
metering algorithm tries to estimate the entropy in the
password roughly by making a weighted average of
two criteria: the word entropy and the character
entropy. The former is exceedingly simple-minded: we
assume that each word adds about 11 bits of entropy.
The latter is more complicated: we determine the
bounding set of the characters of the passphrase in the

ASCII code space and use it as an entropy per
character estimator. Then we multiply it by the number
of characters and divide it by the efficiency of a
customized run-length encoder. This has the effect of
yielding very low scores to regular sequences such as
“aaaa” and “12345”. The quality meter displays its
score in a progress bar and with a scale categorizing
them as “simple”, “good” and “complex”.
The reason we didn’t bother to be much more
scientific than that with the quality meter is that in our
early attempts it became clear it would result in it
being overly frustrating to the end users. Our priority
is to keep the users happy (or at least not too unhappy),
so we calibrated (or rather downgraded) the algorithm
many times to quell their complaints. We did perform
some research about it, but in the limited time we had
we could find no real good papers with general design
guidelines for passphrase quality meters. We opted for
trial and error based on the users’ feedback.
In the end, we struck a middle ground with the
following strategy: we made the meter slightly
challenging and by default it doesn’t allow you to go
on if the score doesn’t lie in the “good” range.
However, we added a checkbox that allows you to
disable the meter restriction altogether – in which case
the user gets a polite message telling something like
“now you’re on your own risk, hope you know what
you’re doing – don’t say I didn’t warn you”.
A frequent question our users pose is “what’s a good
passphrase anyway?” To try to answer that we
implemented the passphrase suggestion dialog shown
in Figure 4d. It generates passphrases suggestions
using the Diceware method [18], which consists of
generating a random number and mapping them onto a
dictionary of 7776 words and common abbreviations,
yielding 12.92 bits of entropy per word. (The method
was originally designed to be performed by hand,
pencil and paper using five dice tosses to select each
word.) With 5 words we get more than 64 bits of
entropy, which provides good enough protection
against brute force attacks under quite general
conditions while remaning reasonably easy to
memorize.
Our user’s feedback to the passphrase suggestion box
has been a mixed bag. Some love it and many hate it –
the primary complaint is that passphrases are way
long. Many system administrators have been asking us
to add a passphrase suggestion algorithm that matches
their password policies like “8 characters with at least
one punctuation character and a number not in the end
nor the beginning”. No amount of arguing that the

diceware passphrases are more secure than those
approaches seems to convince them. On the good side,
however, our rejection rate has been zero precisely
because we give the users the choice: they can simply
disable the quality meter and ignore the suggestion box
altogether if they really want to. Over time, we see that
users gradually start to explore the passphrase
suggestion box and the number of good passphrases
slowly increases. A quantitative characterization of
those intuitive perceptions may make fertile ground for
a future paper.
The last page of the wizard is the one where the key
pair is generated. As many other implementations do, a
progress bar tracks the possibly lengthy key generation
process; we were working on an educational animation
to add to this window, but a discussion of its features
is beyond of the scope of this paper.
After the key pair is generated, the private key is
encrypted with the passphrase and saved in the
Certificate Store. The public key is converted to the
SPKAC format. When the wizard is invoked from the
Keygen Interceptor filter (see section 2.2.2.), we
return this SPKAC to the filter. We also store along
with the private key the state of the attestation
checkboxes in the final page of the wizard (the CSM
has facilities to add property=value tags along
with any object) – they will be needed later when it’s
time to pick up the issued certificate and insert it in the
CSM.
If, on the other hand, wizard has been invoked from
the main menu, the SKPAC is sent in a HTTPS
message to the FreeICP.ORG Entry-Level CA (the
destination URL is configurable but with a hardcoded
default). The Entry-Level CA responds immediately
with the certificate in a PKCS#7 bag right in the HTTP
response body.

2.2 Filters
Filters are routines that change the request header, the
request body, the response header or the response body
of the HTTP requests received by our internal HTTP
server. In our implementation, each filter can change
only one of these items; the cooperation of several
filters is often needed to implement a single particular
feature. The filters are organized in two filter chains:
the request chain and the response chain. Within a
chain, the filters are executed sequentially in the order
they’ve been set up. Some filters depend on others, so
the chain setup tries to ensure that they are
topologically sorted.

Notice that request filters can consume the HTTP
request entirely, removing it from the chain so that it
won’t reach neither the subsequent filters nor the

default dispatcher at the end of the chain. It then
becomes this filter’s responsibility to either issue the

 (a) (b)

 (c) (d)

 (e) (f)
Figure 4: Wizard-style UI for using the FreeICP.ORG instantaneous Entry-Level certificate issuance process. In (a) the user enters his/her name
and email address, while being advised the need to be online and that notifications will be sent over email. In (b) the CA is queried to see whether
that email address is already in use. If so, the CA will send an email with revocation instructions and the process is halted. In (c) the user sets up a
passphrase for the private key that is about to be generated. A quality meter gives prevents the user from choosing too weak a passphrase – unless
the “Enforce quality restrictions” checkbox is disabled. The status texts indicate in real time when the confirmation matches and some educational
security tips are also offered. In (d) we see the passphrase suggestions dialog: ten suggestions are put forth so that the user can choose visually
without revealing the passphrase to shoulder surfers. As the first character is typed, all fields turn to asterisks. Each time the user correctly retypes
the passphrase causes the chosen box to blink. Typing a different one resets the counter. Cheating by using copy-and-paste works but the user is
politely warned that this doesn’t help memorization. In (e), the key pair has been generated, converted to SPKAC, sent to the CA and the signed
certificate has been received back. In (f) we see the new certificate and its associated private key in the certstore main window, already set as the
default ID. The “Mark the Root CA as Trusted” checkbox caused the attestation of root certificate, so it’s shown as directly trusted; the “Mark all
cross-certified Root CAs as Trusted” checkbox caused an attestation on VeriSign’s Root CA as well. The whole process takes 20 seconds or so for
experienced users and less than two minutes for novices – most of it spent figuring out how to either please or bypass the quality meter. The user
gets out of the process with all attestations already performed, so he/she will rarely have to perform manual attestations.

request and insert the response back in the chain or to
abort the request entirely.
Filters can be divided in two main groups described in
the following subsections.

2.2.1. Infrastructure Filters
Infrastructure filters aren’t directly involved in
implementing the security features; they primarily
provide services for the other filters. A description of
the most important filters in this category follows,
roughly in order from the simplest to the most
complex:
• Command Parser: this is a simple request header

filter that detects and extracts a special query
string on the form “x-kapanga-
cmd=[command]” from the URL. Below we
have a short summary of the commands; each will
be discussed in detail further along:

 http://example.com/?x-kapanga-
cmd=addsite(port,title,errpath)
Adds the current site (example.com:80) to the
encryption domain. TLS/SSL connections will be
sent to the TCP port specified in “port”. If the
certificate validation fails, the request is redirected
to “errpath”. The parameter “title” is a user-
friendly added to the bookmark/favorites lists.

 http://test.com:8080/?x-kapanga-
cmd=delsite
Removes the current site (test.com:8080) from the
encryption domain.

 http://yasite.com/?x-kapanga-
cmd=sign(data,sig)
Prepares to sign the field named “data” in an web
form that will be downloaded as a result of this
request. The signature will be performed when the
user hits the submit button in his/her web browser
and the result will be placed in a (possible new)
form field named “sig” as a S/MIME signature.

 http://somewhere.net/?x-kapanga-
cmd=send-usable-ids
Forces the request to become a POST and sends a
list of valid ultimately trusted certificates (without
their respective private keys, of course).

 http://whatever.org.ar/?x-
kapanga-cmd=activate(sha1)
Sets the ultimately trusted certificate with
fingerprint SHA1 as the default for client
authentication with the server specified in the
URL (in the example, “whatever.org.ar:80”)

 http://dummy.net/?x-kapanga-
cmd=ua(string)
This command interacts with two filters. First, it
tells the Version Tag filter to change the User-
Agent header to string, effectively lying about the

browser’s identity and version. This will be
needed to redirect us to the Nestcape-style
certificate issuance system in commercial web-
based CAs. Second, it arms the Keygen
interceptor filter.

• Version Tag: A simple request header filter that
appends an identifier and our version numer to the
User-Agent header, without removing the
browser’s identification. This allows the web
server to detect whether our tool is enabled and
perhaps offer customized functionality. For
instance, a client authentication-capable website
could detect that Kapanga is engaged to the
browser and offer its login URL already including
the x-kapanga-cmd=addsite command.

 This filter is also responsible for “lying” about the
browser’s identity when the command parser has
previously received the x-kapanga-
cmd=ua(string) command. It changes all
User-Agent request headers to the specified string
(typlically something like “Mozilla/5.0”). It also
replaces all occurences of
navigator.appVersion in JavaScripts by
the specified string, since most web-based
commercial CA software uses embedded scripts to
determine the browser’s version.

• Encoding Dampers: quells any encoding
negotiation we can’t understand, such as gzip or
deflate encodings. In our current implementation,
we don’t support any encodings, so this is a
simple filter that sets the the Accept-
Encoding field of the HTTP request headers for
the identity transformation. This is needed
because several filters down the chain will need to
parse the HTML when it comes back. This, of
course, hinders any performance gains that those
encodings might bring. Future implementations
will replace the damper by a proper set of
decoders.

• Chunked Transfer Encoder: converts the HTTP
response bodies to the chunked transfer encoded
form (see [1], section 3.6). This is needed because
the response body filters will very likely change
the length of the body, so the browser must not
employ the ordinary strategy of relying on the
Content-Length header. All that, in turn, is a
consequence of the fact that the body filters
perform on-the-fly rewriting, that is, they act upon
each data block read from the network. The
alternative would be to buffer the whole body,
compute its new length after all filters had been
applied and then send it along to the browser – a
bad idea because response bodies can grow
arbitrarily large, often several megabytes long,
which would make latency too high and memory
consumption prohibitive. The Chunked Transfer

Encoding scheme was invented precisely for this
kind of situation when we don’t know beforehand
the size of the HTTP object we’re transmitting.

An example may clarify what those filters accomplish.
Suppose our browser issues the following HTTP
request (indented for better readability):
GET http://testserver.example.com/t1.html?x-
kapanga-cmd=delsite HTTP/1.1
Accept: image/gif, image/x-xbitmap,
 image/jpeg, image/pjpeg,
 application/vnd.ms-excel,
 application/vnd.ms-powerpoint,
 application/msword,
 application/x-shockwave-flash, */*
Accept-Language: pt-br
User-Agent: Mozilla/4.0 (compatible; MSIE
 6.0; Windows NT 5.1)
Host: testserver.example.com
Connection: Keep-Alive

The full URL on the GET request gives away the fact
that our browser was configured to use a proxy. This
request also includes a Kapanga-specific command.
After passing through the infrastructure filters, it
would be sent over the network like this:
GET /t1.html HTTP/1.1
accept: image/gif, image/x-xbitmap,
 image/jpeg, image/pjpeg,
 application/vnd.ms-excel,
 application/vnd.ms-powerpoint,
 application/msword,
 application/x-shockwave-flash, */*
accept-language: pt-br
accept-encoding: identity;q=1, *;q=0
connection: keep-alive
host: testserver.example.com
proxy-connection: Keep-Alive
user-agent: Mozilla/4.0 (compatible; MSIE
 6.0; Windows NT 5.1) + Kapanga
 0.22

Since in this example Kapanga was not configured to
relay the request to another proxy (that is, IE was not
using a proxy before the engager did its job), the URL
in the GET line is relative. Also notice that the
command parser removed the “x-kapanga-cmd”.
The encoding damper has also left its mark in the
Accept-Encoding line telling that only the identity
encoding is acceptable and all others are not. We can
also see that the version tag filter added our name and
version number to the User-Agent line.
After the request is issued over the network, the server
responds with something like this:
HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 132

<HMTL>
 <HEAD>
 <TITLE>
 Infrastructure filters demo
 </TITLE>
 </HEAD>
 <BODY>
 <H1>Test!</H1>
 All's well.

 </BODY>
</HTML>

The chunked encoder converts this to:
HTTP/1.1 200 OK
content-type: text/html
transfer-encoding: chunked

40
<HMTL>
 <HEAD>
 <TITLE>
 Infrastructure filters demo
 </TIT
40
LE>
 </HEAD>
 <BODY>
 <H1>Test!</H1>
 All's well.
 </BODY>
</
5
HTML>

0

In this example, we lowered the maximum chunk size
to 64 bytes to accentuate the encoding result; in our
actual implementation, the maximum chunk size is
32Kb and it almost never gets that big because the
networking layer sends it to us in even smaller chunks
due to the underlying TCP buffers.
The chunk encoder filter has some heuristics to detect
old browsers (such as IE3) that don’t support the
chunked transfer encoding. In those cases, it refrains
from altering the body but it also quells the HTTP
keepalive feature, so that the browser will rely on the
connection termination to know when the body data
finishes.

2.2.2. Feature Filters
These are the filters that actually implement the
security-relevant features, relying in the infrastructure
provided by the previous filters and the CSM:
• Web Form Signer: this is a request body filter

that acts only on POST requests with the
“application/x-www-form-urlencoded” MIME
type. It is activated when the command parser
previously received a command of the form
sign(in,out,flags). The argument “in” is
the name of a form field in the current page form
which the filter will get data for signing. The filter
displays a dialog box confirming the data being
signed and requesting the passphrase for the
private key that will be used for signing. When it
receives these data from the user, it creates a
S/MIME signed message and encodes as a
(possibly new) form field named “out” (if “out” is
ommited, it is assumed to be the same as “in”).
The flags control things like whether we want our
own certificate included in the signature, whether

to add the whole certificate chain up to the root,
etc.

 The advantage of this approach is that we can add
form signing functionality to some web
application just by activating Kapanga and making
just minor changes in the web application – if it
doesn’t bother to verify the signature, it’s just a
matter of chaning the HTML to include the sign
command and storing the “out” field somewhere.
A signature verification engine, however, would
be recommended to deal with exceptions such as
invalid signatures or to ensure that the signed
contents is the same as previously sent (since it’s
within the client’s control, a malicious user may
change it).

• Usable ID enumeration: This filter is triggered
by the “send-usable-ids” command. First, it forces

the request to become a POST (even if the
browser has sent it as a GET or HEAD). Kapanga
then builds a body with a list of PEM-encoded
ultimately trusted certificates it has. This is
extremely useful because the site can know in
advance which identities we can assume, inform
the user which ones are acceptable or not and help
the user select an appropriate one for login or
registration, reducing the likelihood of frustrating
failures.

 The webmasters we have been working with point
this particular feature as the one that mostly
contributes for the overall user acceptance – it
makes it viable to make helpful web-based
certificate enrollment/registration system almost
as simple as traditional name+password+cookie
methods, as shown in Figure 7.

<HTML>
 <HEAD>
 <TITLE>Web Form Signing Demo</TITLE>
 </HEAD>
 <BODY>
 <table width=100% bgcolor=#00DDFF>
 <tr>
 <td>

 Web For Signing Demo

 </td>
 </tr>
 </table>
 <form method=post
 action="test.pl?x-kapanga-cmd=sign(in,out,1)">
 <table border=0><tr><td>
<textarea rows=5 cols=40 name="in">
A sample text that will be signed.
</textarea>
</td></tr><tr><td align=center>
 <input type=submit name="submit" value=" Ok ">
 <input type=reset name="cancel" value="Cancel">
</td></tr></table>
 </form>
 </BODY>
</HTML>

(a)

(b)

(c)

Figure 5: The web form signing filter in action. In (a) we see a minimalistic web in the browser and its source HTML. Notice the action
URL with a Kapanga special command. The command parser field intercepts this command and set things up to intercept the POST
request body and sign the “in” field, putting the result in a new form field named “out”. The final one in the sign command is a flag to
hasve the S/MIME signer not include the signer’s certificate, just to keep the signature block small enough to fit this screenshot. In (b), the
exact intercepted data that will be sign is shown in a dialog box, where the program allows the user to specify which key he/she wants to
sign with and asks for the key’s passphrase. In (c), the signature has been performed and sent to the server. A script in there displays the
signed block for us. For sake of brevity, we have shown only the successfull case. Lots of failure conditions are handled as well – for
instance, when the signature doesn’t match, or the signed data has been changed by the client, when the user cancels without signing or
when the proxy isn’t activated.

 Granted, this kind of enumeration may be abused
by rogue sites to collect email addresses or
tracking the user’s habits. We argue this is a
necessary evil to provide a seamless HTTP
HTTPS transition. Just in case, we left a
configuration option that allows the user to either
disable this feature entirely or get a popup then the
site sends the enumeration command.

• Remote ID activation: this filter is trigged by the
“activate(sha1)” command. It sets the preferred
default ID for this site (as identified by the host
portion of the URL) as the certificate with the
specified SHA1 fingerprint. If we have no such

certificate or if it’s not ultimately trusted, no
action is performed.

 This command is typically used in pre-logon page
just before the “addsite” command to have the
correct ID selected by default in the Web Site
Login Dialog (where the user is prompted for the
passphrase).

• HTTPS Logon: this filter is activated by the
“addsite” command previously seen by the
Command Parser filter. Recall that this command
has three parameters: the SSL port (443 by
default), a user-friendly site title/name and the
error redirect URL.

<HTML>
 <HEAD>
 <TITLE>
 Client Auth Demo
 </TITLE>
 </HEAD>
 <BODY>
 <TABLE width=100% bgcolor=#00DDFF>
 <TR>
 <TD>

 Client Auth Demo

 </TD>
 </TR>
 </TABLE>

 You are: <TT>O=$SSL_CLIENT_S_DN_O,...,
 CN=$SSL_CLIENT_S_DN_CN</TT>

 Got your cert (chain is ok, didn't check
 revocation though):

<TT>
$SSL_CLIENT_CERT
 </TT>

 </BODY>

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: The HTTPS Logon filterset in a client authentication scenario. In (a) the user directs the web browser to an HTTP URL containing
the command for adding the site to the Encryption Domain. As Kapanga was engaged to the browser, the request is actually sent over HTTPS
because the command parser filter is executed early in the filter chain. Thus, when the request reaches the HTTPS Logon filter, the site
address and port is already in the Encryption Domain. In (b), the site has requested client authentication and Kapanga asks the user which
certificate he/she wants to use and the passphrase of its associated private key. Unlike Internet Explorer, Kapanga doesn’t show expired,
revoked or altogether untrusted certificate, nor has a “remember password” checbox to ruin the whole security of the process. In (c), and the
server have sucessfully completed the TLS handshake, sent the request and got the response back, where we see that the server sucessfully
received and validated the user’s certificate. In (d) we see the returned page source HTML; comparing with the source HTML template in (f),
we can see that the absolute URL in (e) was rewritten (notice the change from “https” to “http”) so that the image download would pass
through our proxy as well.

 The first thing this filter does is a purely user-
friendliness action: it inserts the site URL and title
in the Bookmarks/Favorites list (accessible via a
menu), unless there is already a bookmark for this
site there. That way, the user can easily come back
to this site without having to remember the URL.

 Then the filter inserts the site’s address in the
Encryption Domain, which is just a simple set
mapping host:port pairs to SSL ports and error
URLs. Since the Encryption Domain filter is right
next in the chain, the request will be immediately
rerouted to the HTTPS dispatcher.

• Encryption Domain Filter: this filter checks
whether the host:port in the URL of the current
request is in the Encryption Domain. If it isn’t, the
filter simply lets it follow its way on the filter
chain, so it will ultimately reach the standard
dispatcher and sent to the network over HTTP.

 Otherwise, the request is taken out of the chain (so
it won’t reach the standard dispatcher anymore)
and fed to the HTTPS dispatcher, which, in its
turn, starts the SSL handshake to the port
specified in the site’s entry in the Encryption
Domain.

 If the server requests client authentication, the
HTTPS dispatcher asks for the user’s private key
for the default ID set for this site; if this key is not
cached, the CSM will display a dialog box stating
the exact site name and prompting for the user’s
private key. If, on the other hand, the server
doesn’t require client authentication, this step is
skipped.

 At this point in the SSL handshake, the HTTPS
dispatcher receives the server’s certificate. If the

CSM deems the it untrusted or if any network or
handshake error happened, the dispatcher displays
a dialog box explaining the failure and returns
down the response chain a redirect to the error
URL specified in the site’s entry in the Encryption
Domain (if none was specified, the connection is
simply broken). This way, the site has an
opportunity to display a nice message telling the
user that the HTTP HTTPS transition failed
and maybe provide options to retry or choose
other authentication options (such as plain old
name+password). This in direct contrast with
popular web browsers, which simply break the
connection on SSL failures, leaving the non-
technical user wondering what went wrong.

 Finally, if no errors occurred and the certificate is
held as trusted, the original HTTP request is sent
over the HTTP tunnel and the response inserted
back in the response filter chain. Also notice that,
due to the SSL session caching, the whole
verification process above happens only in the
first connection to the site or when the cache entry
expires.

• URL Rewriter: This filterset is actually part of
the HTTP Logon filterset described above. It acts
only on text/html MIME types on requests
through the HTTPS user agent. Its main purpose is
to rewrite URLs of the form:

 https://example.com/

 as
 http://example.com/

 Supposing, of course, that “example.com” is in the
encryption domain. If the site name in the above

Figure 7: The send-usable-ids
command allows the web application to
provide friendly account creation
assistance, explaining beforehand which
certificates are acceptable and which are not
and thus minimizing frustrating failures.
The “login” and “register” links, use the
activate command to force that
particular certificate to be selected,
minimizing user errors and then redirects to
another URL with the addsite command,
inserting the site into the Encryption
Domain and starting the transition to the
HTTPS site. Even so, the SSL handshake
might still fail if the site’s certificate
doesn’t pass Kapanga’s validation. In this
case (not shown in the picture) the “errpath”
parameter in the addsite command
would redirect the user back to a page
explaining what went wrong and offering
further help. At the bottom of the page, a
form allows the user to start the wizard-
based certificate issuance process directly
from the web page: then clicking on Issue,
the wizard pops up with the name and email
fields already filled in.

URL is not in the encryption domain, it is left
unchanged.

 That way, any further requests initiated by
consequences of the browser parsing the current
HTML will again be sent to us – recall that the
engager configured us as the browser’s HTTP
proxy only – we do not receive any HTTPS
requests the browser generates. So this filter tries
to ensure that all URLs in the HTML the browser
receives point to URLs with the HTTP scheme
what we can proxy.

 The discussion omitted several details for the sake
of clarity. In our implementation, it is comprised
of two filters: a response header filter for rewriting
URLs in the Location field during redirect
messages; and a response body filter the that
parses the HTML looking for tags with src,
href and action parameters and rewrites only
URLs within them – that way, any URLs within
the readable text (outside the tags) won’t be
touched. We also made it rewrite URLs in
window.open JavaScript instructions, since it
occurs quite often in many websites.

 The response body filter is the system’s Achiles
heel: since it is static, it misses any absolute URLs
generated dynamically by embedded languages
such as Java, JavaScript or VBScript, nor it sees
absolute URLs embedded in Flash movies or other
plugin-specific objects. However, things work
remarkably well in sites where nearly all
embedded URLs are relative.

• Keygen Tag Mangler: This filter replaces the
<KEYGEN…> tag used by Netscape-derived
browsers in web forms to generate a new keypair
[12] by a combo box (a
<SELECT>…</SELECT> sequence in HTML
parlance) allowing the user to choose one of the
allowed key sizes. The original name of the
KEYGEN tag is prepended with “x-kapanga-
keygen-”, so that the Keygen Interceptor field
described below can intercept it. This filter is only
active when previously told so by the command
parser.

• Keygen Interceptor: this filter acts on response
bodies of POST requests and only when the
mime-type is “application/x-www-form-
urlencoded”. It looks for form fields with the
name starting with “x-kapanga-keygen-”. Upon
finding it, it starts the New Digital ID Wizard
right in the point where the user chooses the
passphrase (see Figure 4c). When the wizard is
done generating the keypair, it is converted to an
SPKAC and sent over the form field with its
original name (i.e., the “x-kapanga-keygen-”
previously prepended is removed).

• Certificate Interceptor: this filter grabs the
response bodies in “application/x-x509-
{user,ca,email}-cert” MIME types. It also looks
for these content-types in each section of multipart
MIME types as well – this is the mechanism used
by web sites and commercial web-based CAs to
install certificates and certificate chains. The data
is decoded (DER/PEM-armoured detection is built
in and both single certificates and PKCS#7 bags
are supported) and inserted directly to the
Certificate Store.

 If one of the inserted certificates matches a
previously sent SPKAC, the automatic attestations
are performed. If the inserted chain contains a
Root CA but no automatic attestation has
occurred, a dialog box pops up informing the user
that he/she may be interested in performing a
manual attestation.

2.3 Engagers
The engagers are responsible for setting up the data
interception in each browser by inserting ourselves in
the proxy chain through the following process:
• The browser’s current proxy settings are detected

and saved for later restoration;
• The address and port of the proxy the browser is

currently using for sending HTTP requests is
detected and the engager signals our default
dispatcher to use this proxy. If the browser isn’t
using any HTTP proxy, we tell our default
dispatcher to do the same and send the requests
directly;

• The browser’s HTTP proxy settings are
overwritten with “localhost:ourport”, where
“ourport” is the port where we’ve previously
started a server to listen to this specific browser’s
requests;

• The address and port of the proxy the browser is
currently using for sending HTTPS requests is
detected and the engager tells the HTTPS
dispatcher to use this proxy. Unlike the HTTP
proxy, however, we don’t overwrite the browser’s
setting.

Implementing this seems simple, but each browser
presented its own special cases.
The engager for Internet Explorer proved to be the
simplest to implement because IE has simple API calls
to change the settings and have its currently running
instances instantaneously reload any changes made to
it. Slight complications arise due to the several
versions of IE and the API itself. The most severe is
with IE versions 5 and above: since it supports per-
dialup connection profiles, each with its own proxy
settings, the process above has to be performed for
each dialup profile. In the end, the IE engager we
implemented works with all IE versions all the way

back to version 3. Version 2 and below didn’t support
proxies at all.
Implementing the Mozilla engager, on the other hand,
proved to be quite a challenge because of the lack of a
simple way (as far as we know) to signal its currently
running instances of any changes in its settings.
Mozilla’s settings are read once during program
startup and kept in memory. We can easily overwrite
the configuration files and its format is quite simple
(although figuring out where it is located means
messing with registry.dat /appreg file [10]).
This works well for inactive profiles, but not for the
active ones – the running instance doesn’t notice that
Kapanga (an external process, from its point of view)
changed the files and thus doesn’t reload them. And it
overwrites our changes when saving the settings back
to disk as it finishes.

Figure 8: A JavaScript program is the only way to set the proxy
settings in the currently running instances of Mozilla. However,

since changing user settings is a privileged operation, its execution
prompts a confirmation dialog box, somewhat thwarting the

convenience of the engager.

The method we came up with works but is less than
elegant: we generate a web page in a temporary,
randomly-named file the local filesystem with a small
JavaScript program that performs the changes. Then
we direct the currenly running instances of Mozilla
(via DDE [9] on Windows or X-Remote [8] protocol
on Unix) to open this page. Since changing those
settings requires granting special privileges to the
script, the first time it is run Mozilla displays a
confirmation dialog box, as shown in Figure 8 above.
The paranoid may regard this procedure as opening up
a vulnerability itself – from there on, any local scripts
(using the “file:///” scheme) may change Mozilla’s
preferences for that profile. It could have been worse,
though: we considered and rejected the idea of
avoiding the creation of a temporary file by sending
the Javascript program over HTTP – that would mean
the user should allow script execution over the
“http://” scheme, which would open it up to abusive
scripts from anywhere on the Internet.

A limitation of our current engager implementations is
that they cannot handle Proxy AutoConfiguration [11],
which is quite popular. Since implementing this
support would require a quite capable JavaScript
interpreter, we have chosen to deal with it in future
versions; we felt that for the purposes of proving the
concept, it was not essential.
Notice that engagers are just a convenience feature for
users. They’re obviously not necessary for the rest of
the proxy to work, so long as the user changes the
browser and Kapanga’s proxy settings manually. That
way, this whole system works even with browsers our
implementation doesn’t have specific engagers for. All
that is required is that the browser must have proxy
support. We’ve successfully run Kapanga in
conjunction with many other browsers such as
Konqueror, Opera and even Links (a console-based
browser), just for kicks.

3 OTHER DESIGN ALTERNATIVES
Before settling for the particular set of design criteria
and features we described, we considered and rejected
a few other alternatives. While the reasons for some of
them are pretty obvious, other are quite subtle and
perhaps debatable. In the next subsections we describe
a few choices we had to make and the rationalie
behind tem.

3.1 Traffic Interception Method
Using the browsers’ native proxy support was an
obivous choice – web proxy technology was
specifically design to intercept and forward HTTP
traffic and it’s widely deployed and matured. Not that
we lacked choices:
• Internet Explorer has a feature called Browser

Helper Objects [15] that could make interception a
lot easier on that platform because we wouldn’t
have to deal with next-hop proxies and its
particularities (PAC, multiple authentication
methods, etc). However, we didn’t want to confine
Kapanga’s applicability to Windows only; as
previously mentioned, we wanted it to work with
any browser on any platform;

• Implementing Kapanga as a SOCKS [20] proxy
might also work, but it would involve guessing
port numbers where HTTP traffic goes. Besides,
not all proxies support SOCKS;

• Redirecting the socket API calls would not only
require the same port number guesswork, but it
would require a lot more system-dependent code
and it wouldn’t allow Kapanga and the browsers
to run on different machines.

3.2 The Pure-Scheme vs. Cross-Scheme Dilemma
Kapanga uses what we call a cross-scheme system:
when a site is in the Encryption Domain, we
effectively map portions of the HTTPS scheme’s

address space into the HTTP’s address space. That is,
the browser has no notion on whether the request is
going through HTTP or HTTPS – this state
information is in Kapanga’s Encryption Domain. This
has consequences:
• Bookmarks made when a site is in the encryption

domain will probably not work when the site is
not in the encryption domain or when Kapanga is
not running at all (unless the site designer was
very careful to handle this);

• We had to create the URL Rewriter Filter to force
absolute URLs embedded in the HTML back to
us. As previsouly mentioned, though, this fails
with dynamically generated URLs.

Earlier in the design process, we considered – and
rejected – what we called a pure-scheme system: we
would actually implement two proxies, one strictly
HTTP to HTTP and the other strictly HTTPS to
HTTPS. Given that the namespaces don’t collide, there
would be no need for a URL Rewriter filter nor would
we have problems with bookmarks.
This sounds like a good idea if we think only in terms
of the pure HTTP proxy; however, given that SSL was
specifically designed to be resistant to interception and
tampering, the pure HTTPS proxy would have to be, in
fact, a generic HTTPS spoofer/man-in-the-middle
attack.
From a purely cryptographic point of view, this is
quite easy to implement: during the initial SSL
handshake, we send the browser a fake server
certificate generated on the fly. From the user interface
point of view, on the other hand, this has a problem: it
triggers the browser’s SSL warning dialogs, since the
fake certificate isn’t signed by a CA chain the browser
trusts. This is clearly unnaceptable, not only in light of
our philosophy of non-intrusiveness and minimum
hassle for the users, but also because SSL-derived user
interface problems are exactly what Kapanga was
originally intented to solve in the first place.
We could make the SSL spoof work silently if we
inserted a new root certificate in each browser’s
certificate store, but that would bring disadvantages:
first, it would again limit Kapanga to run in the same
computer as the browser (a restriction we didn’t want
to have); second, the exact mechanism for inserting
new roots varies from browser to browser: IE stores
trusted root CAs in the Windows Registry, while
Mozilla-derived browsers use a Berkeley-DB file. This
would increase the amount of platform-specific code
Kapanga would have – something we’ve been trying to
minimize all along –, not to mention that the process
would fail if Kapanga runs without the proper
privileges to write to those certstores.
There are other arguments against the SSL spoofer and
the pure-scheme idea:

• Performance would suffer, since we’d have three
encryption/decryption rounds: the browser
encrypts the data, Kapanga would decrypt it,
modify it and reencrypt it again;

• It wouldn’t work on browsers without native SSL
support; in contrast, the cross-scheme approach
allows Kapanga to work even if the browser
doesn’t support SSL;

• Writing and releasing the code of a portable silent
auto-engaging SSL spoofer would be more like
giving a powerful weapon to the blackhats than a
powerful protection to the average user.

Yet another advantage of the cross-scheme appoach is
that we give the user the choice of not using Kapanga
at all if he/she feels like, so we neither mess nor risk to
break the user’s web banking systems and other
critical applications they already have running.

4 CONCLUSIONS AND FUTURE WORK
We described the architecture of a solution for
perfoming the cryptographic and user interface aspects
of HTTPS channel establishment and web form
signature outside of the web browser. The key idea is
to implement the crypto services in a proxy that
rewrites the HTML on the fly and converts it to
HTTPS when appropriate, so we can bypass the
browser’s and protocol limitations while retaining
compatibility. Thus, any browser with proxy support
can be used – the user is not forced to adopt any
particular web browser. Another advantage is that our
approach does not depend on any proprietary
architecture such as ActiveX or Java.
Our primary motivation was to play with newer user
interface concepts to make client-side PKI easier to
use. A few results stand out: in other to make sites
with client authentication that user’s didn’t hate, we
had little choice but to address a few protocol and user
interface gaps:
• A web site should be able to enumerate the user’s

certificate so as to offer assistance in registration
as preparation for the HTTP-to-HTTPS transition
(the SSL handshake with its certificate validation
process);

• There had to be a way to redirect the user to an
URL with a nice explanation, continuation options
or alternative authentication methods when the
SSL handshake fails. It’s just not acceptable to
break the connection and leave the user with a
cryptic error message;

• The certificate issuance process shouldn’t be so
fragile as to break because of lack of ActiveX
upgrades, different browser versions or the phase
of the moon. Nor it should induce the user to store
the private key without some effort to set up a
decent passphrase. The process must be simple,
reliable and hassle-free. Having it instantaneous is

a plus – with so many online services with
instantaneous registration processes, it is hard to
justify the severe identity validation procedures of
most CAs;

• There really should be a simple way to do such a
simple thing as signing a web form.

The implementation of those features in an external
proxy enabled us to bypass the browsers limitations
while providing the illusion that those features were
“augmented” to the browser in an non-intrusive way. It
also required minimal or sometimes no change to the
server side at all: nothing needs to be changed for
client-based HTTPS authentication; a simple change in
the action URL in HTML forms enables form field
signature (bigger changes may be needed if the
application needs to validate the signatures); and small
changes to the HTML page where the Nestcape vs IE
issuance process decision is made is enough to support
Web-based commercial CAs.
The price of this “backwards” compatibility is paid in
the considerable complexity of the architecture and the
horrible contortions our tool has to go about to
implement them. Some problems may not have a good
solution at all, such as the static nature of the URL
rewriter filter not being able to handle dynamically
generated URLs; this limits the tool’s applicability to
“well behaved” sites only.
There are many worthwhile future improvements on
sight. Making the proxy work for generic TCP
connections as well as HTTP may help extend the use
of client-side authentication for several other protocols
such as SMTP, POP3, VNC, X and many others.
Extending the program to act as a Mail Transfer Agent
(since every MTA is kind of a proxy) holds the
potential for allowing us to make the same for mail
clients: having the digital signature generation and
verification be performed out of the mail client. Going
further in this idea, we could also add support for
encryption and decryption to allow message
confidentiality. We are also working on making the
CSM support PGP and SSH keys as well in order to
achieve Jon Callas’ concept of format agnosticism
[21], consonant with our philosophy of bridging the
PKIs together.

5 ACKNOWLEDGEMENTS
Thanks go to our co-developer Tiago Assumpção and
to Felipe Nóbrega for implementing both the CAs used
for the instantaneous certificate issuance and the public
CSM server. We’d also like to thank Justin Karneges
for writing the first versions of the Q Cryptographic
Archictecture [19] on which our implementation is
based. We are also grateful to the anonymous
reviewers for their invaluable criticisms and
suggestions for this paper.

Horacio and Theco are comic book characters from
Mauricio de Sousa Produções that are arguably part of
Brazilian pop culture, used here for entirely non-profit
illustration purposes.

6 REFERENCES
1. Tim Berners-Lee et al., RFC 2616: Hypertext

Transfer Protocol – HTTP/1.1, 1999,
http://www.faqs.org/rfcs/rfc2616.html

2. Eric Rescorla, RFC 2818: HTTP Over TLS, 2000,
http://www.faqs.org/rfcs/rfc2818.html

3. Eric Rescorla, SSL and TLS: Designing and
Building Secure Systems, 2001, Addison-Wesley,
ISBN 0201615983.

4. Marco Carnut, Cristiano Lincoln Mattos, Evandro
C. Hora & Fábio Silva, FreeICP.ORG: Free
Trusted Certificates by Combining the X.509
Hierarchy and the PGP Web of Trust through a
Collaborative Trust Scoring System, 2003,
Proceedings of the 2nd PKI Research Workshop,
http://middleware.internet2.edu/pki03/presentation
s/02.pdf

5. Ari Luotonen, Tunneling TCP based protocols
through Web proxy servers, 1998,
http://www.web-cache.com/Writings/Internet-
Drafts/draft-luotonen-web-proxy-tunneling-01.txt

6. Steve Lloyd et al, Understanding Certificate Path
Construction, 2002, PKI Forum,
http://www.pkiforum.org/pdfs/Understanding_Pat
h_construction-DS2.pdf

7. Steve Lloyd, AKID/SKID Implementation
Guideline, 2002,
http://www.pkiforum.org/pdfs/AKID_SKID1-
af3.pdf

8. Jamie Zawinski, Remote Control of Unix
Netscape, 1994,
http://wp.netscape.com/newsref/std/x-remote.html

9. MSDN Library, About Dynamic Data Exchange,
http://msdn.microsoft.com/library/default.asp?url=
/library/en-
us/winui/WinUI/WindowsUserInterface/DataExch
ange/DynamicDataExchange/AboutDynamicData
Exchange.asp

10. Daniel Wang, Mozilla Profile registry.dat File
Format,
http://wangrepublic.org/daniel/mozilla/registry

11. Nestcape Inc., Navigator Proxy Auto-Config File
Format, 1996,
http://wp.netscape.com/eng/mozilla/2.0/relnotes/d
emo/proxy-live.html

12. Netscape Inc., Netscape Extensions for User Key
Generation,
http://wp.netscape.com/eng/security/comm4-
keygen.html

13. Arnold G. Reinhold, The Diceware Passphrase
Home Page,
http://world.std.com/~reinhold/diceware.html

14. Sean Smith, Effective PKI Requires Effective HCI,
ACM/CHI Workshop on Human-Computer
Interaction and Security Systems, 2003,
http://www.cs.dartmouth.edu/~sws/papers/hci.pdf

15. Dino Esposito, Browser Helper Objects: The
Browser the Way You Want It, 1999, Microsoft
Corp.,
http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnwebgen/html/bho.asp

16. RSA Data Security Inc, RSA Keon WebPassport,
http://www.rsasecurity.com/node.a
sp?id=1230

17. Verisign Inc., Go! Secure for Web Applications,
http://www.verisign.com/products-
services/security-services/pki/pki-security/pki-
solution/web-application/

18. John Marchesini, Sean. Smith & Meiyuan Zhao,
Keyjacking: the surprising insecurity of client-side
SSL,
http://www.cs.dartmouth.edu/~sws/papers/kj04.pd
f

19. Justing Karneges, Q Cryptographic Architecture,
http://delta.affinix.com/qca/

20. M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas
& L. Jones, SOCKS Protocol Version 5,
http://www.faqs.org/rfcs/rfc1928.html

21. Jon Callas, Improving Message Security With a
Self-Assembling PKI, 2003, Proceedings of the
2nd PKI Research Workshop,
http://middleware.internet2.edu/pki03/presentation
s/03.pdf

