
A Hardware-secured Credential Repository for Grid PKIs

Markus Lorch
Virginia Tech

mlorch@vt.edu

Jim Basney
NCSA

jbasney@ncsa.uiuc.edu

Dennis Kafura
Virginia Tech

kafura@cs.vt.edu

Abstract

Public Key Infrastructures suffer from usability

and security problems associated with the request for
and secure management of end user credentials.
Online credential repositories provide mechanisms to
ease these shortcomings but pose attractive targets for
attacks due to the accumulation of credentials and the
need for remote access to these credentials. Through
the extension of an existing credential repository with
a cryptographic co-processor for secure storage of
credentials an increase in the security of the service
can be achieved. This higher security permits the use
of online credential repositories with a wide variety of
certificates without violating certification authority
regulations. Also, the improved performance afforded
by hardware support improves the scalability of a
centralized credential storage.

1. Introduction

In a Public Key Infrastructure (PKI), a subject
authenticates by proving possession of a private key.
The subject’s identity is bound to a publicly known
key (inverse to the private key) via a certificate issued
and signed by a commonly trusted certification
authority. The security of PKI mechanisms is
dependent on the secrecy of the subject's private key.
Protection of the private key is the responsibility of the
subject (the user).

All too often the subject’s private key is vulnerable
due to improper “key hygiene” . Common lapses in
“key hygiene” include failing to encrypt the key with a
strong password and storing the key on an insecure
file system. Tools and protocols sometimes increase
key vulnerability. For example, Internet Explorer
stores private keys without a passphrase by default [1],
and both OpenSSH and OpenSSL make it trivial to
create unencrypted private keys. Inadequate protection
of the private key opens the door for key compromise
when the security of the hosting computer or network

is breached. A network breach can compromise keys
on network filesystems or network backups. Due to the
distributed nature of PKI mechanisms it is difficult or
impossible to enforce proper key protection policies
unless the keys are stored only on hardware tokens
that do not permit key extraction (e.g. smart-cards).

User management of private keys also presents
significant usability challenges. Generating keys and
obtaining a signed certificate can be a confusing and
time-consuming process. For example, certificate and
key generation in Internet Explorer “may take up to 12
steps with scary messages about scripting violations”
[1]. The resulting certificate and private key are stored
locally on the user’s computer, in a dedicated
certificate store or in regular files. To use the
certificate and key on another computer, the user must
export the credentials from one computer’s certificate
store and import them to the other computer’s
certificate store, or manually copy files between
computers, being careful to maintain correct file
permissions and use secure transmission protocols.

Generating and storing users’ private keys on
smart-cards is an attractive solution for managing
private keys. The private key remains secure in the
smart-card’s memory, and the smart-card provides key
mobility, allowing the user to use his credential on
different terminals. In addition, smart-cards provide
for “ two-factor” authentication: something you have
(the card) plus something you know (the PIN needed
to access the smart-card).

However, deployment of smart-cards is not a trivial
task mainly due to the lack of smart-card reader
devices at users’ workstations as well as software
integration problems. For example, a Grid computing
pilot project on the Virginia Tech campus that used
smart-cards for authentication encountered issues with
a lack of reader drivers for Unix based workstations
and the lack of support for the use of smart-cards in
the Globus Toolkit [2]. While it was possible to use
smart cards with the Java CoG Kit for Globus [3], the
licensing of the necessary libraries prohibited a
deployment of this solution.

bruno
0-7803-8430-X/04/$20.00 ©2004 IEEE

For applications and environments where
deploying smart-cards is not feasible, a “password-
enabled PKI” can provide a similar level of security
and usability using trusted PKI servers for managing
user keys [4]. In this paper we describe a password-
enabled PKI solution using a hardware-secured online
credential repository that provides secure storage for
users’ private keys. The system creates the keys in a
tamper resistant cryptographic co-processor and issues
short-term credentials, signed with the protected keys,
to authenticated users. Storing keys in the co-
processor addresses the hygiene problem by not
allowing keys to be extracted. The co-processor also
provides for faster key generation using good random
numbers. The security of the repository is improved
because keys are protected in the co-processor even if
the repository server is compromised. We have
implemented the system by modifying an existing
credential repository for Grid computing called
MyProxy [5].

Our paper is organized as follows. In the next
section, we present related work, reviewing existing
implementations and research of password-enabled
authentication systems. In section 3, we give a detailed
description of the MyProxy system, which we
modified for this work. Section 4 presents our
contribution, a hardware-secured version of the
MyProxy system. We then conclude with a discussion
of future work and a summary of the paper.

2. Related work

The Kerberos authentication service [6] is a widely-
used password-enabled cryptographic system,
providing password-based access to cryptographic
keys from an online Key Distribution Center (KDC).
Each user shares with the KDC a secret key generated
from a password. Clients retrieve limited-lifetime
credentials encrypted with the secret key from the
KDC and decrypt them with the user’s password.
Version 5 of the Kerberos protocol adds pre-
authentication [7], requiring requests for credentials to
be encrypted with the shared secret, so attackers can
not make valid requests for credentials to then perform
offline dictionary attacks on them. The Kerberos KDC
is an attractive target for attack, as the compromise of
the KDC machine can reveal all user keys for the
Kerberos realm. Itoi [8] integrated the IBM 4758
secure co-processor into the Kerberos V5 KDC to
protect against KDC compromise by moving critical
KDC operations to the co-processor so user keys are
never available unencrypted on the KDC host
machine.

SPX [9] is an authentication system similar to
Kerberos but built on public key cryptography. An
SPX server holds users’ long-term PKI credentials,
encrypted with the users’ passwords, and users
authenticate to the SPX server to retrieve their long-
term credentials which they use to sign short-term
credentials that are stored unencrypted on the local
filesystem to be used for the remainder of the session.
The short lifetime of the stored credentials limits their
exposure to compromise.

The Globus Toolkit’s Grid Security Infrastructure
(GSI) [10], a widely adopted standard for Grid
computing, also has short-term PKI session
credentials, called proxies. MyProxy [5] is an online
credential repository for GSI credentials that allows
users to authenticate with a password and retrieve
short-term proxy credentials. Unlike the SPX server,
users’ long-term credentials never leave the MyProxy
server. Instead, the MyProxy server uses the user’s
long-term key in the repository to sign a proxy (or
delegation [11]) certificate, and sends the certificate to
the authenticated client. As with the Kerberos KDC
and the SPX server, the MyProxy server is an
attractive target for attack, as it holds many user keys.
In both the SPX server and the MyProxy server, user
keys are encrypted with user-chosen passwords, so a
server compromise opens the keys to dictionary attack.
This vulnerability motivates our work to integrate the
MyProxy server with the IBM 4758 cryptographic co-
processor.

Sandhu et al. [4] survey two classes of password-
enabled PKI solutions: virtual soft tokens and virtual
smart-cards. In their terminology, virtual soft token
systems allow users to retrieve private keys from a
credential server (for example, a traditional credential
repository) and then use the keys directly without
further interaction with the server, whereas in virtual
smart-card systems users don’ t have direct access to
their private keys but instead must interact with the
server to perform signing operations. Virtual smart-
card systems split the private key into two
components, one computed from the user’s password
and the other stored on a secure online server. The
user and server participate in a signing protocol that
does not require either of them to disclose their split
key to the other or to reconstruct the complete private
key at any point. If the virtual smart-card server is
compromised, the attacker can perform a dictionary
attack against the server key shares, since the
corresponding user shares are computed from user
passwords. However, this type of attack is much
slower than a dictionary attack against DES encrypted
keys. Yaksha, an early example of a virtual smart-card
system, replaced shared user secrets in Kerberos with

split RSA keys to protect against KDC compromise
[12]. It is possible to further protect against server
compromise by distributing threshold split keys to
multiple servers such that a subset t of n servers work
together to generate a threshold signature without
reconstructing the complete private key, so a
compromise of less than t servers cannot reconstruct
the complete private key [13].

A number of commercial PKI credential
repositories are available, typically as an add-on to
Certification Authority products to support credential
mobility [14, 15]. The nCipher netHSM
(www.ncipher.com/nethsm/) provides a network-
attached hardware security module for storing private
keys. Also, the IETF Securely Available Credentials
(SACRED) working group is developing a standard
protocol for network-based access to credential
repositories [16].

Online credential repositories can be categorized as
either mechanism-aware or mechanism-neutral. A
mechanism-aware repository (like MyProxy) can
support mechanism-specific protocols for credential
retrieval, which allows the repository to implement
policies on the credentials that clients can retrieve. For
example, a repository can hold long-term user keys
that never leave the repository but are instead used to
sign short-term credentials. Thus, credential
revocation can be implemented by simply removing
the keys from the repository. However, allowing the
repository server direct access to the keys weakens
non-repudiation claims. In contrast, a mechanism-
neutral credential repository (like SACRED) can store
many types of credentials. Credential encryption and
decryption is performed by the client, so the repository
itself never has access to the unencrypted credentials.

Online Certificate Authorities [17, 18, 19, 20],
which create new credentials on demand, can be an
alternative to credential repositories. Users
authenticate to the online CA and issue a certificate
request. The CA sets the user’s authenticated identity
in a certificate then signs and returns the certificate to
the requester. This allows users to retrieve short-term
certificates from the online CA on demand without
needing to manage long-term private keys. For
example, KCA [18] is a popular online CA for Grid
sites that allows users to authenticate via Kerberos to
retrieve short-term GSI credentials. Like a traditional
CA, the security of the online CA’s private key is
paramount. The CA’s private key may be secured by a
hardware security module. Threshold split-key
approaches can distribute CA functionality across
multiple CAs for further protection [19]. One
drawback to online CAs is the potentially high cost of
adding a new CA to the PKI, which may require

renegotiating trust agreements with relying parties.
Credential repositories can provide a more flexible
solution, since they need not be tied directly with a CA
but could be deployed to manage credentials for a
single user, a small group within an organization, or a
large collaborative group that spans organizations
(and CAs).

3. MyProxy Online Credential Repository

MyProxy was originally developed to delegate Grid

credentials to trusted web servers (called Grid portals)
so they can perform authenticated operations (submit
jobs, transfer files, etc.) on the user’s behalf without
modifying standard web browsers [5]. Users login to
the portal and enter a MyProxy server name,
username, and passphrase that the portal can use to
retrieve short-term proxy credentials for the user.
Instead of storing long-term user credentials on the
web server, the MyProxy approach uses a separate,
dedicated credential server (the MyProxy server) to
protect the long-term credentials against web server
compromise. The web server holds only short-term
proxy credentials it has retrieved from the MyProxy
server.

MyProxy has since been extended to support Grid
credential mobility and credential renewal. It is
common practice for users to sign-on to the Grid from
different machines, creating a requirement for
credential mobility. Rather than copying their long-
term credentials to these different machines, with the
associated usability and security concerns, users can
store the credentials on the MyProxy server, protected
by a passphrase, and retrieve a short-term proxy
credential from the MyProxy server when needed by
authenticating with the credential passphrase.
Credential renewal allows users to avoid delegating
long-lived credentials to long-running tasks. Instead,
they can set renewal policies for credentials in the
MyProxy repository that allow trusted job
management systems (JMS) to retrieve new
credentials for running tasks before they expire. The
JMS must authenticate with a credential that is
allowed by the user’s renewal policy, then prove
possession of the credential to be renewed, before
retrieving a new short-lived proxy credential for a
user’s long-running task.

MyProxy can be integrated with a Certificate
Authority whereby new user credentials are created by
the CA and loaded into the MyProxy repository with a
preset password. Administrators distribute default
passwords to users who should immediately change
them. Using MyProxy in this way allows users to
obtain PKI credentials without going through a

(potentially confusing) certificate request process and
without placing a key management burden on users.

By keeping long-term keys in the MyProxy
repository and restricting clients to retrieving only
short-term credentials, the MyProxy server becomes a
central point of control and monitoring for the user’s
credentials. Removing long-term credentials from the
repository provides a simple form of revocation, as any
outstanding short-term credentials will soon expire.
Administrators can monitor the MyProxy logs to
detect suspicious activity or assess damage if a
password or credential is compromised.

4. Hardware-secured MyProxy

We have built an online credential repository that

extends the widely used MyProxy software to employ a
cryptographic co-processor for the secure storage of
private keys. The co-processor not only protects the
user’s keys from potential attackers in the case of a
host compromise, but also prevents access to those
keys by administrators. The co-processor adds three
important features to the functionality that comes with
a software-only MyProxy installation:

1. By generating and storing the keys only on the
cryptographic co-processor the issues associated with
key hygiene are nonexistent. Also, the use of a
hardware random number generator enables stronger
and faster key generation.

2. As the keys are not extractible from the co-
processor, no third party can ever have access to the
keys directly. Many Certification Authorities require
this as it is the basis for non-repudiation guarantees.

3. Due to the tamper resistant properties of the
hardware token a host machine does not require
extensive physical security and can be located in semi-
secure areas comparable to housing an ordinary server
machine.

4.1 Hardware and software used

The hardware token in use is an IBM 4758

cryptographic co-processor. The IBM 4758 is FIPS-
140 certified at level 4, which is the highest possible
certification for commercial security granted by the
U.S. Department of Commerce's National Institute of
Standards. It consists of a fully self-contained,
programmable computer on a battery powered PCI
adapter card with a tamper responsive casing. It has a
built in cryptographic processor for fast public key
cryptography and comes with 4MB of non-volatile
storage for keys, certificates and firmware. We were
able to create and store more than 800 2048-bit RSA
key pairs on the device. Through customization of the

firmware much larger numbers may be possible
(theoretically up to 10,000) by optimizing the on-card
memory management. Several co-processors could be
installed in a single machine to increase the capacity
even more. Typical smart-cards in contrast provide
storage of 16-32 KB which is enough for 3-5 key pairs
and certificates. The IBM 4758 can run secure
applications directly on the adapter’s own general
purpose processor (an Intel 486) while cypto
operations are realized in a crypto processor.

To interface the card with MyProxy, IBM’s open
source software “openCryptoki” (http://www-
106.ibm.com/developerworks/security/library/s-pkcs)
was used. OpenCryptoki provides an implementation
of the standard PKCS11 [21] programming interface
developed by RSA for interaction between applications
and personal security tokens such as smart-cards.
Most of the PKCS11 functionality is implemented on
the co-processor itself in the form of a specialized
PKCS11 firmware that replaces the standard IBM
Cryptographic Component Architecture firmware
more typically used with the 4758. The complete
system is implemented on Linux using IBM’s Open
Source Linux driver and the Linux management
toolkit for the 4758. Since our modified version of
MyProxy interfaces with the 4758 via the standard
PKCS11 interface, we expect it to be portable to other
cryptographic hardware modules.

4.2 Credential generation

To enforce proper “key hygiene” , keys are

generated directly on the co-processor and are marked
non-extractable. Neither the end-entity (the user) nor
the administrator can extract such keys from the
device. Instead a user can use his key exclusively to
request a time-limited proxy credential. The user must
supply his identity and password. The decision to
retain the keys in the co-processor limits our approach
to those applications that support the use of proxy
certificates.

Traditionally end-entity certificate requests are
generated as follows: First a new key pair is generated
on the user’s workstation (i.e. by a web browser), and
then a certificate request structure is created with the
requesting user’s identity information and his newly
generated public key. This structure is then signed
with the newly generated private key and sent to a CA.
The CA, upon verifying the user’s identity, will create
a certificate that binds the user’s identity to the public
key the user specified in the certificate request.

The creation of user key-pairs on the (remote)
hardware token required a new protocol and
mechanism for certificate requests. The traditional

procedure described above is not possible if the user
does not have direct access to the private key. Thus we
have created a web interface to the credential
repository where a user can provide his personal
information together with an initial password that will
later protect his credentials. The repository will create
a key pair and a certificate request and send it on to
the CA. The user will get a confirmation including his
newly created public key which, if required by the CA,
the user can present to a CA appointed registration
authority for the identity vetting procedure. CAs
typically make new certificates available for download
to the user. As the certificates themselves do not need
to be protected an automated routine on the MyProxy
server can retrieve and install the certificates without
user or administrator intervention once these become
available. Installation of a new certificate merely
requires the storage of this certificate along with the
user’s public key and access control information in the
MyProxy credential database.

4.3 Changes to MyProxy

The changes required to enable MyProxy to

leverage the IBM 4758 were mainly placed in the
underlying OpenSSL security library. OpenSSL
provides functionality by which the application code
can select an external implementation of a
mechanism-specific set of cryptographic functions at
runtime. Such external implementations are referred
to as cryptographic engines within OpenSSL. The
MyProxy server has been modified to select a custom
PKCS11 engine for all RSA related operations. This
almost alleviated the need for changes in the MyProxy
server code as the use of PKCS11 is otherwise
transparent to MyProxy as well as to the security
libraries of the Grid Security Infrastructure that
MyProxy uses.

However, a significant change to the behavior of
MyProxy with respect to process management was
required. The software-only MyProxy created a new
child process to serve each incoming client request but
PKCS11 forbids the use of the same PKCS11 session
in different process spaces. Our current prototype
handles requests sequentially in a single process to
temporarily work-around this problem. Of course, a
single process provides inadequate performance for
multiple clients. Creating individual PKCS11 sessions
after a client process has been forked is undesirable as
a PIN has to be supplied to gain access to the co-
processor. Storing the PIN in the server process
memory makes it vulnerable to attack. Furthermore
the possible large number of concurrent sessions may
overload the co-processor and make it vulnerable to

denial-of-service attacks. Instead, we plan to
implement a server that utilizes a fixed pool of worker
processes. At startup, the administrator will enter the
co-processor PIN and the server will spawn a set of
processes which will use the PIN to initiate individual
sessions with the co-processor and then immediately
scrub the PIN from memory.

A significant functional change to the standard
MyProxy is the way a requested proxy certificate is
signed. In the software-only version the user’s private
key is decrypted and loaded into the main memory of
the host machine and then a signature for the proxy
certificate is created using the main CPU of the host.
In the hardware enhanced version only the public key
of the user is loaded into the host computer’s memory.
The PKCS11 interface is used by the OpenSSL engine
to transparently locate the corresponding private key
on the co-processor and to create a signature utilizing
the co-processor’s RSA implementation in hardware.
The private key never leaves the co-processor.

In the standard MyProxy the user’s private keys are
encrypted individually with a user supplied password
when a user uploads his credentials. When the
delegation of a new proxy certificate is requested this
password has to be supplied in order for MyProxy to
be able to access the user’s private key (additional
access control mechanisms such as mutual
authentication of the computer from which the user
requests a proxy may also apply). In our modified
version of MyProxy the user’s private key is never
loaded into the host computer’s memory but rather all
cryptographic functions that require access to the key
are handled on the co-processor. PKCS11 only
provides for a single login which grants the accessing
application the right to use all the private keys on the
device. Access control to individual PKCS11 objects is
not supported by the interface. Instead, access control
is performed by the MyProxy server by checking a
one-way hash of the user supplied password against
the corresponding entry in a password file.

While performance aspects are not the most
important considerations of this work it is interesting
to note that the IBM 4758 implements RSA operations
in hardware and thus frees up the main CPU of the
host computer for other tasks. However, the co-
processor is not a crypto accelerator and considerable
overhead is imposed by additional the software
abstraction layer (the PKCS11 implementation). The
result is a lower performance for crypto operations
when compared to the standard implementation using
the main CPU of the host computer (in our case an
Intel Xeon @ 2.4GHz). We experienced a total
performance hit of 15% for delegation requests
without mutual PKI authentication and 19% when the

clients authenticated with a PKI credential to the
MyProxy server (all RSA operations are performed on
the co-processor, including those for the TLS protocol
used by the Grid Security Infrastructure). Utilization
of the main CPU was significantly lower with the co-
processor enabled. Newer generations of cryptographic
co-processors may provide much higher public key
speeds. For example in our evaluation of an IBM
cryptographic accelerator (IBM 2058) we could
perform 66 times more 2048bit RSA sign operations
per second with the accelerator support than with the
above mentioned general purpose CPU (using the
openSSL speed command).

4.4 Security assessment

Our modified system provides higher key

protection than the original mechanisms in MyProxy.
In the original version an attacker that compromises
the MyProxy server could learn user’s passwords as
they send requests for credentials. Once in possession
of the password, the attacker could decrypt and exploit
the user’s private key.

In the new system neither an attacker nor a user
nor an administrator can ever extract the private key
from the co-processor even if the security of the host
machine is breached. The PKCS11 PIN with which
MyProxy authenticates to the co-processor has to be
manually keyed in at the console when the service is
started. For higher security and to avoid keystroke
logging an external keypad could be used.

The fact that the co-processor guarantees that
nobody can ever extract the user’s private keys allows
for the use of this credential repository with most
currently issued certificates. Common key handling
procedures and requirements (i.e. that entities other
than the end user have no access to the private key;
that the private key is never available unencrypted)
stated in many CA's Certificate Policy and
Certification Practice Statements are fulfilled.

In addition, using a hardware-secured online
credential store with password protected access to
credentials not only provides for the simpler
dissemination and protection of PKI credentials but
also offers higher security than a username/password
authentication scheme alone. The reason for this lies
in the fact that the user's keys can never be extracted
from the hardware token and thus, even if an attacker
manages to gain knowledge of the user's password, the
keys can not be copied. The attacker could merely
request proxy credentials from the service if the user's
password is known. This has the significant advantage
that keys and certificates do not need to be revoked but
merely the password changed when such a

compromise is detected. As the credential repository is
the only place from where such a proxy could be
requested these requests can be monitored closely and
misuse detected (which is much less possible if a key
is compromised and copied to a remote location; thus
the traditional need for a revocation).

We believe that the advantages of relieving the user
from key hygiene procedures coupled with the
convenience of remote access to delegated credentials
are well worth the usage restrictions that come with
this scheme as a user’s end-entity credentials are not
available directly to the user’s applications. In our
experience, certificates issued for grid computing are
rarely used for other tasks than authentication and the
creation of proxy certificates. Many grid CA policies
do not even allow them to be used in other
applications.

5. Future work

We found that we could further improve the

security of the credential service if the PKCS11 token
would support access control decisions on an
individual bases for each private key. Currently our
credential service authenticates and authorizes access
to use a specific private key but, due to limitations in
the PKCS11 standard, the credential service itself has
access to all the keys on the hardware token. This
violates the least privilege access principle [22] and
does not allow for localization of a security breach.
We have investigated the possibility of protecting the
end-entity keys from unauthorized usage in such a
case and limiting the effects of a security breach.

The inability of PKCS11 to perform access-control
on an individual key basis is due to its original focus
on personal security tokens, such as smart-cards.
Today PKCS11 is moving towards the use in servers
where many different credentials are stored on the
token and thus individual access control is required.
There has been some discussion in the PKCS
community on how these scenarios can be supported
better and the next major version of PKCS11 (version
3) may incorporate appropriate extensions.

An approach that would indefinitely increase the
storage capacity of the hardware token is the
outsourcing of protected keys. This requires a
guarantee that keys can never exist unencrypted
outside the device, even if the user's password has
been compromised. Such a storage system could be
realized as follows.

1. Key pairs are created on the device only and the
private key is marked "sensitive", which allows
extraction only in encrypted form.

2. Upon creation of a new private key it is wrapped
(encrypted) with a combination of two keys, one key is
derived from the user's password and the other key
that is only available to the hardware device internally
and un-extractable. The second key is also marked
such that it can only be used for wrapping and
unwrapping of keys.

3. A wrapped key can be stored in any location
outside the hardware token.

4. If the wrapped key needs to be used it will be re-
imported into the hardware token and unwrapped
using the user's password and the token’s internal key.
As the unwrap operation requires both the user's
password and the wrapping key held on the device it is
guaranteed that even if the user's password is
compromised the user's key could never be unwrapped
anywhere but in the hardware token.

5. The semantics of the unwrap operation have to
be such that an unwrapped key cannot be extracted
from the hardware token in the clear and may only be
wrapped with token internal wrapping keys that are
non extractable.

Unfortunately this mechanism cannot be
implemented using the current PKCS11 standard
(V2.x) due to the following two reasons. First, in
PKCS11 there is no mechanism that would allow us to
define that a user's key contained in the co-processor
can only be wrapped using the combination of user
and token keys as described above. While an attacker
could not extract a key unencrypted it is possible to
extract the key encrypted with the attacker’s choice of
a wrapping key. Second, the current PKCS11
definition of the unwrap operation does not mark the
resulting keys as "sensitive." A subsequent
modification of the attributes could fix this setting.
But this leaves open the possibility of a timing-based
attack that can allow the extraction of the key in
unencrypted form. An alternative would be to program
the co-processor with custom functionality similar to
the work done by Itoi [9] but we would lose the
abstraction and thus portability advantages that
PKCS11 provides.

Another item for future work is a system extension
that will allow a user from a different administrative
domain to get a locally trusted certificate. Instead of
entering his personal information into the certificate
request module, the user would authenticate to the
certificate request module using a foreign public key
credential (issued by a CA that is not generally trusted
on the local resources, a common situation in today’s
grid environments). The certificate request module
would generate a certificate request to the local CA
and also provide the proof of identity (based on the
user's authentication) to the CA. The CA in turn can

then, based on the trust in the foreign certificate,
either issue a local certificate without the need to vet
the identity of the user again or perform additional
identity vetting. This is similar to an Online CA as the
time and effort involved in getting a local certificate is
much reduced when compared to a direct request at
the CA but has the advantage that no additional
Online CA is required, nor do new trust relationships
(either for an Online CA or for the foreign CA issuing
the original certificate) need to be configured on the
local resources.

As mentioned earlier, the fact that the user's private
keys are only stored in a remote credential repository
and cannot be extracted limits the application of this
system to grid authentication scenarios that employ
proxy certificates. The development of a client
interface exposing a standard PKCS11 application
programming interface would allow the system to be
used with any PKCS11 capable application. The
hardware device would simply be outsourced. The
connection between the local PKCS11 library stub and
the remote PKCS11 server could be secured with
existing secure transport technologies like TLS with
server-only authentication where the client would
authenticate using his password (provided by the
PKCS11 application via the PIN login mechanism).
The identity of the user could be provided though a
similar mechanism as outlined in the existing
PKCS11 standard (in the appendix on multiple PINS
and virtual tokens) by appending the user's identity to
the token name or out of band through configuration
parameters supplied to the local PKCS11 client stub.

Another possible item for future work would be to
support delegating credentials to the co-processor
using the MyProxy protocol. We could make
additional modifications to the MyProxy server so it
accepts delegated user credentials by generating keys
on the co-processor and has the co-processor sign the
delegation certificate request. This would give users
the flexibility to store credentials from other CAs,
credentials with restricted rights, or other types of
credentials in the repository.

6. Summary

In this paper we showed that the usability and security
of PKI authentication was undermined by failure to
practice appropriate “key hygiene” and by the
complexity of certificate request and distribution. The
use of a centralized PKI credential store solves many
of these problems but poses an attractive target for
attacks and may violate CA regulations. We showed
that strengthening a credential repository with
hardware security devices improves security, provides

compliance with CA regulations, and offers additional
attractive properties such as performance
improvements. The experimental implementation
described in this paper is available from the MyProxy
website at http://myproxy.ncsa.uiuc.edu.

7. Acknowledgements

The authors would like to acknowledge the

contributions to this work by Jeevak Kasarkod and
Bahaaldin Al-Amood (Virginia Tech) as well as the
support for this research from the Virginia
Commonwealth Information Security Center (CISC)
and the IBM Corporation, specifically Shawn Mullen,
Stephen Bade and Kent Yoder of IBM Austin.

8. References

[1] M. Carnut, E. Hora, and C. Mattos, “FreeICP.ORG: Free
Trusted Certificates by Combining the X.509 and PGP
Hierarchy Through a Collaborative Trust Scoring System”,
Proceedings of the 2nd Annual PKI Research Workshop,
Gaithersburg, Maryland, April 2003, pp. 13-29.

[2] I. Foster and C. Kesselmanm, “Globus: A
Metacomputing Infrastructure Toolkit” , International
Journal of Supercomputer Applications, vol. 11, no. 2,
1997, pp. 115-128.

[3] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, "A
Java Commodity Grid Kit", Concurrency and Computation:
Practice and Experience, vol. 13, no. 8-9, 2001, pp. 643-
662.

[4] R. Sandhu, M. Bellare, and R. Ganesan, “Password-
Enabled PKI: Virtual Smart-cards versus Virtual Soft
Tokens” , Proceedings of the 1st Annual PKI Research
Workshop, Gaithersburg, Maryland, April 2002, pp. 89-96.

[5] J. Novotny, S. Tuecke, and V. Welch, “An Online
Credential Repository for the Grid: MyProxy” , Proceedings
of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, 2001.

[6] J. Steiner, C. Neuman, and J. Schiller, “Kerberos: An
Authentication Service for Open Network Systems” , Proc.
of the Winter 1988 Usenix Conference, February, 1988.

[7] C. Neuman and T. Ts'o, “Kerberos: An Authentication
Service for Computer Networks” , IEEE Communications,
vol. 32, no. 9, September 1994, pp. 33-38.

[8] N. Itoi, “Secure Coprocessor Integration with Kerberos
V5” , Proceedings of the 9th USENIX Security Symposium,
Denver, Colorado, August 2000.

[9] J. Tardo and K. Alagappan, “SPX: Global Authentication
Using Public Key Certificates” , Proceedings of the IEEE

Computer Society Symposium on Research in Security and
Privacy, May 1991, pp. 232-244.

[10] R. Butler, D. Engert, I. Foster, C. Kesselman, S.
Tuecke, J. Volmer, and V. Welch, “A National-Scale
Authentication Infrastructure” , IEEE Computer, 33(12),
December 2000, pp. 60-66.

[11] M. Gasser and E. McDermott, “An Architecture for
Practical Delegation in a Distributed System”, IEEE
Symposium on Research in Security and Privacy, May 1990,
pp. 20-30.

[12] Ganesan, R., “Yaksha: Augmenting Kerberos with
Public Key Cryptography” , Proceedings of the Symposium
on Network and Distributed System Security, Februrary
1995, pp. 132 -143.

[13] X. Wang, “ Intrusion Tolerant Password-Enabled PKI” ,
Proceedings of the 2nd Annual PKI Research Workshop,
Gaithersburg, Maryland, April 2003, pp. 44-53.

[14] G. Sarbari, “Security Characteristics of Cryptographic
Mobility Solutions” , Proceedings of the 1st Annual PKI
Research Workshop, Gaithersburg, Maryland, April 2002.

[15] J. Basney, W. Yurcik, R. Bonilla, and A. Slagell, "The
Credential Wallet: A Classification of Credential
Repositories Highlighting MyProxy", 31st Research
Conference on Communication, Information and Internet
Policy (TPRC 2003), Arlington, Virginia, September 2003.

[16] A. Arsenault and S. Ferrell, “Securely Available
Credentials – Requirements” , IETF RFC 3157, 2001.

[17] Y. Hsu and S. Seymour, “An Intranet Security
Framework Based on Short-Lived Certificates” , IEEE
Internet Computing, vol. 2, no. 2, April 1998, pp. 73-79.

[18] O. Kornievskaia, P. Honeyman, B. Doster, and K.
Coffman, “Kerberized Credential Translation: A Solution to
Web Access Control” , USENIX Security Symposium, 2001.

[19] L. Zhou, F. B. Schneider, and R. van Renesse, “COCA:
A Secure Distributed On-line Certification Authority” , ACM
Transactions on Computer Systems, vol. 20, no. 4,
November 2002, pp. 329-368.

[20] P. Gutmann, “Plug-and-Play PKI: A PKI Your Mother
Can Use” , Proceedings of the 12th USENIX Security
Symposium, Washington, DC, August 2003, pp 45-68.

[21] RSA Laboratories, “PKCS #11 v2.11: Cryptographic
Token Interface Standard” , RSA Security Inc. Public-Key
Cryptography Standards (PKCS), November 2001.

[22] J. R. Salzer and M. D. Schroeder, "The Protection of
Information in Computer Systems", Proceedings of the
IEEE, Vol 63, No. 9, September 1975, pp. 1278-1308.

